ترغب بنشر مسار تعليمي؟ اضغط هنا

Change of carrier density at the pseudogap critical point of a cuprate superconductor

145   0   0.0 ( 0 )
 نشر من قبل Sven Badoux
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pseudogap is a central puzzle of cuprate superconductors. Its connection to the Mott insulator at low doping $p$ remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate $p$ is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 T to show that Fermi-surface reconstruction by charge order in YBa$_2$Cu$_3$O$_y$ ends sharply at a critical doping $p = 0.16$, distinctly lower than the pseudogap critical point at $p^* = 0.19$. This shows that pseudogap and charge order are separate phenomena. We then find that the change of carrier density from $n = 1 + p$ in the conventional metal at high p to $n = p$ at low $p$ - a signature of the lightly doped cuprates - starts at $p^*$. This shows that pseudogap and antiferromagnetic Mott insulator are linked.

قيم البحث

اقرأ أيضاً

The thermal conductivity $kappa$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured down to 50 mK in seven crystals with doping from $p=0.12$ to $p=0.24$, both in the superconducting state and in the magnetic field-induced normal state. We obtain the electronic residual linear term $kappa_0/T$ as $T to 0$ across the pseudogap critical point $p^{star}= 0.23$. In the normal state, we observe an abrupt drop in $kappa_0/T$ upon crossing below $p^{star}$, consistent with a drop in carrier density $n$ from $1 + p$ to $p$, the signature of the pseudogap phase inferred from the Hall coefficient. A similar drop in $kappa_0/T$ is observed at $H=0$, showing that the pseudogap critical point and its signatures are unaffected by the magnetic field. In the normal state, the Wiedemann-Franz law, $kappa_0/T=L_0/rho(0)$, is obeyed at all dopings, including at the critical point where the electrical resistivity $rho(T)$ is $T$-linear down to $T to 0$. We conclude that the non-superconducting ground state of the pseudogap phase at $T=0$ is a metal whose fermionic excitations carry heat and charge as conventional electrons do.
192 - K. Ishida , S. Hosoi , Y. Teramoto 2019
Superconductivity is a quantum phenomenon caused by bound pairs of electrons. In diverse families of strongly correlated electron systems, the electron pairs are not bound together by phonon exchange but instead by some other kind of bosonic fluctuat ions. In these systems, superconductivity is often found near a magnetic quantum critical point (QCP) where a magnetic phase vanishes in the zero-temperature limit. Moreover, the maximum of superconducting transition temperature Tc frequently locates near the magnetic QCP, suggesting that the proliferation of critical spin fluctuations emanating from the QCP plays an important role in Cooper pairing. In cuprate superconductors, however, the superconducting dome is usually separated from the antiferromagnetic phase and Tc attains its maximum value near the verge of enigmatic pseudogap state that appears below doping-dependent temperature T*. Thus a clue to the pairing mechanism resides in the pseudogap and associated anomalous transport properties. Recent experiments suggested a phase transition at T*, yet, most importantly, relevant fluctuations associated with the pseudogap have not been identified. Here we report on direct observations of enhanced nematic fluctuations in (Bi,Pb)2Sr2CaCu2O8+d by elastoresistance measurements, which couple to twofold in-plane electronic anisotropy, i.e. electronic nematicity. The nematic susceptibility shows Curie-Weiss-like temperature dependence above T*, and an anomaly at T* evidences a second-order transition with broken rotational symmetry. Near the pseudogap end point, where Tc is not far from its peak in the superconducting dome, nematic susceptibility becomes singular and divergent, indicating the presence of a nematic QCP. This signifies quantum critical fluctuations of a nematic order, which has emerging links to the high-Tc superconductivity and strange metallic behaviours in cuprates.
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the ze ro-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.
The mysterious pseudogap phase of cuprate superconductors ends at a critical hole doping level p* but the nature of the ground state below p* is still debated. Here, we show that the genuine nature of the magnetic ground state in La2-xSrxCuO4 is hidd en by competing effects from superconductivity: applying intense magnetic fields to quench superconductivity, we uncover the presence of glassy antiferromagnetic order up to the pseudogap boundary p* ~ 0.19, and not above. There is thus a quantum phase transition at p*, which is likely to underlie highfield observations of a fundamental change in electronic properties across p*. Furthermore, the continuous presence of quasi-static moments from the insulator up to p* suggests that the physics of the doped Mott insulator is relevant through the entire pseudogap regime and might be more fundamentally driving the transition at p* than just spin or charge ordering.
The nature of the pseudogap phase remains a major barrier to our understanding of cuprate high-temperature superconductivity. Whether or not this metallic phase is defined by any of the reported broken symmetries, the topology of its Fermi surface re mains a fundamental open question. Here we use angle-dependent magnetoresistance (ADMR) to measure the Fermi surface of the cuprate Nd-LSCO. Above the critical doping $p^*$---outside of the pseudogap phase---we fit the ADMR data and extract a Fermi surface geometry that is in quantitative agreement with angle-resolved photoemission. Below $p^*$---within the pseudogap phase---the ADMR is qualitatively different, revealing a clear transformation of the Fermi surface. Changes in the quasiparticle lifetime across $p^*$ are ruled out as the cause of this transformation. Instead we find that our data are most consistent with a reconstruction of the Fermi surface by a $Q=(pi, pi)$ wavevector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا