ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive study of out-of-plane transport properties in BaFe$_{2}$As$_{2}$: Three-dimensional electronic state and effect of chemical substitution

63   0   0.0 ( 0 )
 نشر من قبل Masamichi Nakajima
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the out-of-plane transport properties of parent and chemically substituted BaFe$_{2}$As$_{2}$ for various types of substitution. Based on the studies of Hall coefficient and chemical-substitution effect, we have clarified the origin for the unusual temperature dependence of out-of-plane resistivity $rho_c(T)$ in the high-temperature paramagnetic-tetragonal phase. Electron (hole) carriers have an incoherent (coherent) character, which is responsible for non-metallic (metallic) $rho_c(T)$. Although both of electron and hole contributions are almost comparable, a slightly larger contribution comes from electrons at high temperatures, while from holes at low temperatures, resulting in a maximum in $rho_c(T)$. In the low-temperature antiferromagnetic-orthorhombic phase, the major effect of substitution is to increase the residual-resistivity component, as in the case for the in-plane transport. In particular, Co atoms substituted for Fe give rise to strong scattering with large $mathit{ac}$ anisotropy. We found that K substitution induces a non-metallic behavior in $rho_c(T)$ at low temperatures, which is likely due to a weakly localized nature along the $c$-axis direction.

قيم البحث

اقرأ أيضاً

We performed polarization- and photon-energy-dependent angle-resolved photoemission spectroscopy of a slightly overdoped iron pnictide superconductor, BaFe$_{1.8}$Co$_{0.2}$As$_{2}$, to clarify the three-dimensional electronic structure including its orbital characters at the Brillouin zone center. Two hole Fermi surfaces (FSs) with $d_{xz/yz}$ and $d_{xy/x^2-y^2}$ orbitals were observed but $d_{z^2}$ hole FS, which has nodes according to a theory of the spin-fluctuation superconductivity mechanism, did not appear. These results suggest that no node will appear at hole FSs at the zone center.
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont ribution to the specific heat, we find that the normal-state electronic specific heats in the superconducting samples may have a nonlinear temperature dependence, which challenges previous results in the electron-doped Ba-122 iron-based superconductors. A model based on the presence of ferromagnetic spin fluctuations may explain the data between x = 0.1 and x = 0.15, suggesting the important role of Fermi-surface topology in understanding the normal-state electronic states.
A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe$_2$As$_2$, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nemati c) transition temperature $T_s$. Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature $T_N$ ($<T_s$) and create in-plane resistivity anisotropy above $T_s$. Here we use neutron polarization analysis to show that such a strain on BaFe$_2$As$_2$ also induces a static or quasi-static out-of-plane ($c$-axis) AF order and its associated critical spin fluctuations near $T_N/T_s$. Therefore, uniaxial pressure necessary to detwin single crystals of BaFe$_2$As$_2$ actually rotates the easy axis of the collinear AF order near $T_N/T_s$, and such effect due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.
The isovalent-substituted iron-pnictide superconductor SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x$=0.35) has a slightly higher optimum critical temperature than the similar system BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, and its parent compound SrFe$_{2}$As $_{2}$ has a much higher Neel temperature than BaFe$_{2}$As$_{2}$. We have studied the band structure and the Fermi surfaces of optimally-doped SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ by angle-resolved photoemission spectroscopy (ARPES). Three holelike Fermi surfaces (FSs) around (0,0) and two electronlike FSs around ($pi$,$pi$) have been observed as in the case of BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$. Measurements with different photon energies have revealed that one of the hole FSs is more strongly warped along the $k_{z}$ direction than the corresponding one in BaFe(As$_{1-x}$P$_{x}$)$_{2}$, while the electron FSs are almost cylindrical unlike corrugated ones in BaFe(As$_{1-x}$P$_{x}$)$_{2}$. Comparison of the ARPES data with first-principles band-structure calculation revealed that the quasiparticle mass renormalization factors are different not only between bands of different orbital character but also between the hole and electron FSs of the same orbital character. By examining nesting conditions between the hole and electron FSs, we conclude that magnetic interactions between FeAs layers rather than FS nesting play an important role in stabilizing the antiferromagnetic order. The insensitivity of superconductivity to the FS nesting can be explained if only the $d_{xy}$ and/or $d_{xz/yz}$ orbitals are active in inducing superconductivity or if FS nesting is not important for superconductivity.
152 - Lilia Boeri 2010
We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe$_{2}$As$_{2}+delta$ using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by $sim 50%$, up to $lambda lesssim 0.35$, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that $lambda$ versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا