ﻻ يوجد ملخص باللغة العربية
We investigated the out-of-plane transport properties of parent and chemically substituted BaFe$_{2}$As$_{2}$ for various types of substitution. Based on the studies of Hall coefficient and chemical-substitution effect, we have clarified the origin for the unusual temperature dependence of out-of-plane resistivity $rho_c(T)$ in the high-temperature paramagnetic-tetragonal phase. Electron (hole) carriers have an incoherent (coherent) character, which is responsible for non-metallic (metallic) $rho_c(T)$. Although both of electron and hole contributions are almost comparable, a slightly larger contribution comes from electrons at high temperatures, while from holes at low temperatures, resulting in a maximum in $rho_c(T)$. In the low-temperature antiferromagnetic-orthorhombic phase, the major effect of substitution is to increase the residual-resistivity component, as in the case for the in-plane transport. In particular, Co atoms substituted for Fe give rise to strong scattering with large $mathit{ac}$ anisotropy. We found that K substitution induces a non-metallic behavior in $rho_c(T)$ at low temperatures, which is likely due to a weakly localized nature along the $c$-axis direction.
We performed polarization- and photon-energy-dependent angle-resolved photoemission spectroscopy of a slightly overdoped iron pnictide superconductor, BaFe$_{1.8}$Co$_{0.2}$As$_{2}$, to clarify the three-dimensional electronic structure including its
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont
A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe$_2$As$_2$, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nemati
The isovalent-substituted iron-pnictide superconductor SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x$=0.35) has a slightly higher optimum critical temperature than the similar system BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, and its parent compound SrFe$_{2}$As
We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe$_{2}$As$_{2}+delta$ using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by $sim 50%$, up to