ترغب بنشر مسار تعليمي؟ اضغط هنا

لا تجاهل جميع الحالات المتحيزة: التحقيق في الافتراض الأساسي في تقنيات تخفيف البيانات DataSet

Don't Discard All the Biased Instances: Investigating a Core Assumption in Dataset Bias Mitigation Techniques

176   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

غالبا ما تصل التقنيات الحالية لتخفيف DataSet Bias إلى نموذج متحيز لتحديد مثيلات منحازة. ثم يتم تخفيض دور هذه الحالات المتحيزة خلال تدريب النموذج الرئيسي لتعزيز متانة البيانات الخاصة به ببيانات خارج التوزيع. إن الافتراض الأساسي المشترك لهذه التقنيات هو أن النموذج الرئيسي يتعامل مع حالات متحيزة بالمثل للنموذج المتحيز، في أنه سوف يلجأ إلى التحيزات كلما كان ذلك متاحا. في هذه الورقة، نوضح أن هذا الافتراض لا يمسك بشكل عام. نقوم بإجراء تحقيق حاسم على مجموعة من مجموعات عمليتين مشهورة في المجال، MNLI و FEVER، إلى جانب طريقتين للكشف عن مثيل متحيز، وإدخال جزئي ونماذج ذات سعة محدودة. تظهر تجاربنا أنه في حوالي الثلث إلى نصف الحالات، لا يتمكن النموذج المتحيز من التنبؤ بسلوك النموذج الرئيسي، مع إبرازها بواسطة الأجزاء المختلفة بشكل كبير من المدخلات التي يضمونها قراراتهم. بناء على التحقق الدليلي، نوضح أيضا أن هذا التقدير يتماشى للغاية مع التفسير البشري. تشير النتائج التي توصلنا إليها إلى أن ترزز المثيلات التي تم اكتشافها بواسطة طرق اكتشاف التحيز، وهي إجراءات تمارس على نطاق واسع، هي مضيعة لا لزوم لها من البيانات التدريبية. نطلق سرد علاماتنا لتسهيل الإنتاجية والبحوث المستقبلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أخبار وهمية تسبب أضرارا كبيرة في المجتمع.للتعامل مع هذه الأخبار المزيفة، تم إجراء العديد من الدراسات حول نماذج كشف البناء وترتيب مجموعات البيانات.معظم مجموعات بيانات الأخبار المزيفة تعتمد على فترة زمنية محددة.وبالتالي، فإن نماذج الكشف المدربة على مثل هذه البيانات لديها صعوبة في اكتشاف الأخبار الرواية المزيفة الناتجة عن التغييرات السياسية والتغيرات الاجتماعية؛قد ينتج عنهم إخراج متحيز من المدخلات، بما في ذلك أسماء شخص معين وأسماء تنظيمية.نشير إلى هذه المشكلة كتحيز DIACHRONIC لأنه سبب تاريخ إنشاء الأخبار في كل مجموعة بيانات.في هذه الدراسة، نؤكد التحيز، وخاصة الأسماء المناسبة بما في ذلك أسماء الشخص، من انحراف مظاهر العبارة في كل مجموعة بيانات.بناء على هذه النتائج، نقترح طرق الاخفاء باستخدام Wikidata للتخفيف من تأثير أسماء الشخص والتحقق من صحة ما إذا كانوا يقومون بإجراء نماذج الكشف عن الأخبار وهمية قوية من خلال التجارب مع بيانات داخل المجال والخروج.
واحدة من الآليات التي ينتشر فيها التضليل عبر الإنترنت، لا سيما من خلال وسائل التواصل الاجتماعي، من خلال توظيف تقنيات الدعاية. وتشمل هذه الاستراتيجيات الخطابية والنفسية المحددة، تتراوح من الاستفادة من العواطف لاستغلال المداخل المنطقية. في هذه الورقة، هدفنا هو دفع البحث إلى الأمام على اكتشاف الدعاية بناء على تحليل النص، بالنظر إلى الدور الحاسم قد تلعب هذه الأساليب لمعالجة هذه القضية المجتمعية الرئيسية. وبشكل أكثر دقة، نقترح نهجا مختلفا لتصنيف مقتطفات نصية كرسائل دعائية ووفقا لتقنية الدعاية التطبيقية الدقيقة، بالإضافة إلى تحليل لغوي مفصل للميزات التي تميز معلومات الدعاية في النص (مثل ميزات الدلالية والمعنويات والحجة) وبعد تجارب واسعة النطاق التي أجريت على موارد دعائية متوفرة (IE، NLP4IF'19 و Semeval'y-Task Task 11) تشير إلى أن النهج المقترح، والاستفادة من طرازات لغة مختلفة والسمات اللغوية التي تم التحقيق فيها، تحقق نتائج واعدة للغاية حول تصنيف الدعاية، سواء - وفي مستوى الشظية.
في الوقت الحاضر، تستخدم منصات وسائل التواصل الاجتماعي نماذج التصنيف للتعامل مع خطاب الكراهية واللغة المسيئة.مشكلة هذه النماذج هي ضعفها للحيز.شكل منتشر من التحيز في خطاب الكراهية ومجموعات البيانات اللغوية المسيئة هو التحيز الهندي الناجم عن التصور النف سي للتعليق وتعقيد مهمة الشرح.في ورقتنا، نقوم بتطوير مجموعة من الأساليب لقياس التحيز العنافي في مجموعات البيانات اللغوية المسيئة وتحديد وجهات نظر مختلفة باللغة المسيئة.نحن نطبق هذه الأساليب إلى أربع مجموعات بيانات مختلفة للغة المسيئة.يدعم نهجنا المقترح عمليات التوضيحية لهذه مجموعات البيانات والبحوث المستقبلية التي تتناول وجهات نظر مختلفة حول تصور اللغة المسيئة.
تم إنشاء العديد من مجموعات البيانات لتدريب نماذج الفهم في القراءة، والسؤال الطبيعي هو ما إذا كان يمكننا دمجها لبناء النماذج التي (1) أداء أفضل على جميع مجموعات بيانات التدريب و (2) تعميم وتحويل أفضل بيانات جديدة إلى مجموعات البيانات الجديدة. عالج الع مل المسبق هذا الهدف من خلال تدريب شبكة واحدة في وقت واحد على مجموعات بيانات متعددة، والتي تعمل بشكل جيد في المتوسط ​​ولكنها عرضة للتوزيعات الفرعية المختلفة أو غير الضرورية ويمكن نقلها أسوأ مقارنة بالنماذج المصدر بأكثر تداخل مع DataSet المستهدف. يتمثل نهجنا في نموذج سؤال متعدد البيانات مستجيب مع مجموعة من خبراء DataSet واحد، من خلال تدريب مجموعة من وحدات محول محول خفيفة الوزن وخفيفة الوزن (Houlsby et al.، 2019) التي تشترك في نموذج محول أساسي. نجد أن خبراء مجموعة البيانات متعددة المحولات (صنع) تفوقوا جميع خطوط الأساس لدينا من حيث دقة التوزيع، والأساليب البسيطة القائمة على متوسط ​​المعلمة تؤدي إلى تحسين التعميم الصفرية وأداء قليل من الرصاص، مما يوفر قويا و نقطة انطلاق متعددة الاستخدامات لبناء أنظمة مفهوم القراءة الجديدة.
خلال العقد الأخير من القرن العشرين ظهرت مجموعة من المتغيرات التكنولوجية المتقدمة في مجالات نظم المعلومات المرتبطة بالحاسبات الآلية و وسائل الاتصال و ضغط البيانات و نقلها عبر شبكات الحاسب الآلي. حيث انتقلت نظم المعلومات من اعتمادها على النص و بعض الرس ومات البيانية البسيطة إلى اعتمادها على استخدام الوسائط المتعددة التي تعمل على توصيل المعلومات في أشكال مختلفة من خلال ترابط و تكامل مجموعة متباينة من التكنولوجيات المختلفة (الصوت, الصور, النص, الفيديو, ..الخ). و قد كان تطور تلك النظم في البداية مقصوراً على الاستخدام المنفرد, و لكن نظراً لأهمية نظم الاتصالات و تطور شبكة الانترنت و استخدام نظم الوسائط المتعددة من قبل مستخدمين متعددين في أماكن مختلفة من حيث الموقع الجغرافي, ظهرت أهمية المشاركة في بيانات الوسائط المتعددة, و بالتالي حتمية تداولها من خلال شبكات الحاسب الآلي. و من هنا ظهرت الحاجة إلى ظهور شبكات ذات مواصفات خاصة يمكنها التعامل مع عناصر الوسائط المتعددة بكفاءة عالية. و من جانب آخر ظهرت أهمية وجود نظم وسائط متعددة لديها القدرة على التعامل مع شبكات الحاسب الآلي. من ذلك نرى بأن هذه النظم سوف تتسم بكبر حجم بياناتها إضافة إلى الصعوبة الحقيقية في نقل هذه البيانات و خاصة عبر شبكات الحاسب. لذلك فقد دعت مشاكل تخزين أحجام كبيرة من البيانات مقارنة مع صغر سعة الأجهزة التخزينية و مشاكل نقل كميات كبيرة منها عبر الشبكات إلى تطوير تقنيات لتخفيض (اختصار) أحجام البيانات قدر الإمكان مما يساعد على توفير في المساحات التخزينية من جهة و توفير الوقت عند إرسال البيانات من جهة ثانية

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا