ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Geometry and Diffusion

60   0   0.0 ( 0 )
 نشر من قبل Konstantinos Anagnostopoulos
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English
 تأليف J. Ambjorn




اسأل ChatGPT حول البحث

We study the diffusion equation in two-dimensional quantum gravity, and show that the spectral dimension is two despite the fact that the intrinsic Hausdorff dimension of the ensemble of two-dimensional geometries is very different from two. We determine the scaling properties of the quantum gravity averaged diffusion kernel.


قيم البحث

اقرأ أيضاً

84 - J. Ambjorn 1996
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the frac tal dimension d_H = 3.58 +/- 0.04. This result lends support to the conjecture d_H = -2alpha_1/alpha_{-1}, where alpha_{-n} is the gravitational dressing exponent of a spin-less primary field of conformal weight (n+1,n+1), and it disfavors the alternative prediction d_H = -2/gamma_{str}. On the other hand, we find dim[l] = dim[r^2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension d_s = 1.980 +/- 0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c=-2.
We present improved upper and lower bounds for the momentum-space ghost propagator of Yang-Mills theories in terms of the two smallest nonzero eigenvalues (and their corresponding eigenvectors) of the Faddeev-Popov matrix. These results are verified using data from four-dimensional numerical simulations of SU(2) lattice gauge theory in minimal Landau gauge at beta = 2.2, for lattice sides N = 16, 32, 48 and 64. Gribov-copy effects are discussed by considering four different sets of numerical minima. We then present a lower bound for the smallest nonzero eigenvalue of the Faddeev-Popov matrix in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry of the first Gribov region $Omega$. This allows a simple and intuitive description of the infinite-volume limit in the ghost sector. In particular, we show how nonperturbative effects may be quantified by the rate at which typical thermalized and gauge-fixed configurations approach the boundary of Omega, known as the first Gribov horizon. As a result, a simple and concrete explanation emerges for why lattice studies do not observe an enhanced ghost propagator in the deep infrared limit. Most of the simulations have been performed on the Blue Gene/P--IBM supercomputer shared by Rice University and S~ao Paulo University.
384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
127 - John Preskill 2018
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though Im not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, its worthwhile to get started now. Todays research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics.
We point out that supersymmetric warped geometry can provide a solution to the SUSY flavor problem, while generating hierarchical Yukawa couplings. In supersymmetric theories in a slice of AdS_5 with the Kaluza-Klein scale M_KK much higher than the w eak scale, if all visible fields originate from 5D bulk fields and supersymmetry breaking is mediated by the bulk radion superfield and/or some brane chiral superfields, potentially dangerous soft scalar masses and trilinear $A$ parameters at M_KK can be naturally suppressed compared to the gaugino masses by small warp factor. We present simple models yielding phenomenologically interesting patterns of soft parameters in this framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا