ﻻ يوجد ملخص باللغة العربية
We study the diffusion equation in two-dimensional quantum gravity, and show that the spectral dimension is two despite the fact that the intrinsic Hausdorff dimension of the ensemble of two-dimensional geometries is very different from two. We determine the scaling properties of the quantum gravity averaged diffusion kernel.
We study a c=-2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r^{d_H}]= dim[N], where the frac
We present improved upper and lower bounds for the momentum-space ghost propagator of Yang-Mills theories in terms of the two smallest nonzero eigenvalues (and their corresponding eigenvectors) of the Faddeev-Popov matrix. These results are verified
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold
Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic
We point out that supersymmetric warped geometry can provide a solution to the SUSY flavor problem, while generating hierarchical Yukawa couplings. In supersymmetric theories in a slice of AdS_5 with the Kaluza-Klein scale M_KK much higher than the w