ترغب بنشر مسار تعليمي؟ اضغط هنا

JPEG Steganography with Embedding Cost Learning and Side-Information Estimation

87   0   0.0 ( 0 )
 نشر من قبل Jianhua Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) have been proposed and achieved success for spatial steganography. However, the application of GAN to JPEG steganography is still in the prototype stage; its anti-detectability and training efficiency should be improved. In conventional steganography, research has shown that the side-information calculated from the precover can be used to enhance security. However, it is hard to calculate the side-information without the spatial domain image. In this work, an embedding cost learning framework for JPEG Steganography via a Generative Adversarial Network (JS-GAN) has been proposed, the learned embedding cost can be further adjusted asymmetrically according to the estimated side-information. Experimental results have demonstrated that the proposed method can automatically learn a content-adaptive embedding cost function, and use the estimated side-information properly can effectively improve the security performance. For example, under the attack of a classic steganalyzer GFR with quality factor 75 and 0.4 bpnzAC, the proposed JS-GAN can increase the detection error 2.58% over J-UNIWARD, and the estimated side-information aided version JS-GAN(ESI) can further increase the security performance by 11.25% over JS-GAN.



قيم البحث

اقرأ أيضاً

Although significant progress in automatic learning of steganographic cost has been achieved recently, existing methods designed for spatial images are not well applicable to JPEG images which are more common media in daily life. The difficulties of migration mostly lie in the unique and complicated JPEG characteristics caused by 8x8 DCT mode structure. To address the issue, in this paper we extend an existing automatic cost learning scheme to JPEG, where the proposed scheme called JEC-RL (JPEG Embedding Cost with Reinforcement Learning) is explicitly designed to tailor the JPEG DCT structure. It works with the embedding action sampling mechanism under reinforcement learning, where a policy network learns the optimal embedding policies via maximizing the rewards provided by an environment network. The policy network is constructed following a domain-transition design paradigm, where three modules including pixel-level texture complexity evaluation, DCT feature extraction, and mode-wise rearrangement, are proposed. These modules operate in serial, gradually extracting useful features from a decompressed JPEG image and converting them into embedding policies for DCT elements, while considering JPEG characteristics including inter-block and intra-block correlations simultaneously. The environment network is designed in a gradient-oriented way to provide stable reward values by using a wide architecture equipped with a fixed preprocessing layer with 8x8 DCT basis filters. Extensive experiments and ablation studies demonstrate that the proposed method can achieve good security performance for JPEG images against both advanced feature based and modern CNN based steganalyzers.
Nowadays, a popular method used for additive watermarking is wide spread spectrum. It consists in adding a spread signal into the host document. This signal is obtained by the sum of a set of carrier vectors, which are modulated by the bits to be emb edded. To extract these embedded bits, weighted correlations between the watermarked document and the carriers are computed. Unfortunately, even without any attack, the obtained set of bits can be corrupted due to the interference with the host signal (host interference) and also due to the interference with the others carriers (inter-symbols interference (ISI) due to the non-orthogonality of the carriers). Some recent watermarking algorithms deal with host interference using side informed methods, but inter-symbols interference problem is still open. In this paper, we deal with interference cancellation methods, and we propose to consider ISI as side information and to integrate it into the host signal. This leads to a great improvement of extraction performance in term of signal-to-noise ratio and/or watermark robustness.
61 - Yan Ke , Minqing Zhang , Jia Liu 2017
The distortion in steganography that usually comes from the modification or recoding on the cover image during the embedding process leaves the steganalyzer with possibility of discriminating. Faced with such a risk, we propose generative steganograp hy with Kerckhoffs principle (GSK) in this letter. In GSK, the secret messages are generated by a cover image using a generator rather than embedded into the cover, thus resulting in no modifications in the cover. To ensure the security, the generators are trained to meet Kerckhoffs principle based on generative adversarial networks (GAN). Everything about the GSK system, except the extraction key, is public knowledge for the receivers. The secret messages can be outputted by the generator if and only if the extraction key and the cover image are both inputted. In the generator training procedures, there are two GANs, Message- GAN and Cover-GAN, designed to work jointly making the generated results under the control of the extraction key and the cover image. We provide experimental results on the training process and give an example of the working process by adopting a generator trained on MNIST, which demonstrate that GSK can use a cover image without any modification to generate messages, and without the extraction key or the cover image, only meaningless results would be obtained.
The article considers the problem of estimating a high-dimensional sparse parameter in the presence of side information that encodes the sparsity structure. We develop a general framework that involves first using an auxiliary sequence to capture the side information, and then incorporating the auxiliary sequence in inference to reduce the estimation risk. The proposed method, which carries out adaptive SURE-thresholding using side information (ASUS), is shown to have robust performance and enjoy optimality properties. We develop new theories to characterize regimes in which ASUS far outperforms competitive shrinkage estimators, and establish precise conditions under which ASUS is asymptotically optimal. Simulation studies are conducted to show that ASUS substantially improves the performance of existing methods in many settings. The methodology is applied for analysis of data from single cell virology studies and microarray time course experiments.
We propose an image steganographic algorithm called EncryptGAN, which disguises private image communication in an open communication channel. The insight is that content transform between two very different domains (e.g., face to flower) allows one t o hide image messages in one domain (face) and communicate using its counterpart in another domain (flower). The key ingredient in our method, unlike related approaches, is a specially trained network to extract transformed images from both domains and use them as the public and private keys. We ensure the image communication remain secret except for the intended recipient even when the content transformation networks are exposed. To communicate, one directly pastes the `message image onto a larger public key image (face). Depending on the location and content of the message image, the `disguise image (flower) alters its appearance and shape while maintaining its overall objectiveness (flower). The recipient decodes the alternated image to uncover the original image message using its message image key. We implement the entire procedure as a constrained Cycle-GAN, where the public and the private key generating network is used as an additional constraint to the cycle consistency. Comprehensive experimental results show our EncryptGAN outperforms the state-of-arts in terms of both encryption and security measures.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا