ﻻ يوجد ملخص باللغة العربية
The distortion in steganography that usually comes from the modification or recoding on the cover image during the embedding process leaves the steganalyzer with possibility of discriminating. Faced with such a risk, we propose generative steganography with Kerckhoffs principle (GSK) in this letter. In GSK, the secret messages are generated by a cover image using a generator rather than embedded into the cover, thus resulting in no modifications in the cover. To ensure the security, the generators are trained to meet Kerckhoffs principle based on generative adversarial networks (GAN). Everything about the GSK system, except the extraction key, is public knowledge for the receivers. The secret messages can be outputted by the generator if and only if the extraction key and the cover image are both inputted. In the generator training procedures, there are two GANs, Message- GAN and Cover-GAN, designed to work jointly making the generated results under the control of the extraction key and the cover image. We provide experimental results on the training process and give an example of the working process by adopting a generator trained on MNIST, which demonstrate that GSK can use a cover image without any modification to generate messages, and without the extraction key or the cover image, only meaningless results would be obtained.
In this paper, a novel data-driven information hiding scheme called generative steganography by sampling (GSS) is proposed. Unlike in traditional modification-based steganography, in our method the stego image is directly sampled by a powerful genera
We propose an image steganographic algorithm called EncryptGAN, which disguises private image communication in an open communication channel. The insight is that content transform between two very different domains (e.g., face to flower) allows one t
This paper proposes a new steganographic scheme relying on the principle of cover-source switching, the key idea being that the embedding should switch from one cover-source to another. The proposed implementation, called Natural Steganography, consi
Steganography represents the art of unobtrusively concealing a secrete message within some cover data. The key scope of this work is about visual steganography techniques that hide a full-sized color image / video within another. A majority of existi
A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) have been p