ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins

288   0   0.0 ( 0 )
 نشر من قبل Arvind Ramanathan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We outline recent developments in artificial intelligence (AI) and machine learning (ML) techniques for integrative structural biology of intrinsically disordered proteins (IDP) ensembles. IDPs challenge the traditional protein structure-function paradigm by adapting their conformations in response to specific binding partners leading them to mediate diverse, and often complex cellular functions such as biological signaling, self organization and compartmentalization. Obtaining mechanistic insights into their function can therefore be challenging for traditional structural determination techniques. Often, scientists have to rely on piecemeal evidence drawn from diverse experimental techniques to characterize their functional mechanisms. Multiscale simulations can help bridge critical knowledge gaps about IDP structure function relationships - however, these techniques also face challenges in resolving emergent phenomena within IDP conformational ensembles. We posit that scalable statistical inference techniques can effectively integrate information gleaned from multiple experimental techniques as well as from simulations, thus providing access to atomistic details of these emergent phenomena.



قيم البحث

اقرأ أيضاً

Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synucle in that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that alpha-synuclein is disordered with conformational statistics that are intermediate between random walk and collapsed globule behavior. An advantage of calibrated molecular simulations over constraint methods is that physical forces act on all residues, not only on residue pairs that are monitored experimentally, and these simulations can be used to study oligomerization and aggregation of multiple alpha-synuclein proteins that may precede amyloid formation.
The Virtual Institute for Integrative Biology (VIIB) is a Latin American initiative for achieving global collaborative e-Science in the areas of bioinformatics, genome biology, systems biology, metagenomics, medical applications and nanobiotechnolgy. The scientific agenda of VIIB includes: construction of databases for comparative genomics, the AlterORF database for alternate open reading frames discovery in genomes, bioinformatics services and protein simulations for biotechnological and medical applications. Human resource development has been promoted through co-sponsored students and shared teaching and seminars via video conferencing. E-Science challenges include: interoperability and connectivity concerns, high performance computing limitations, and the development of customized computational frameworks and flexible workflows to efficiently exploit shared resources without causing impediments to the user. Outreach programs include training workshops and classes for high school teachers and students and the new Adopt-a-Gene initiative. The VIIB has proved an effective way for small teams to transcend the critical mass problem, to overcome geographic limitations, to harness the power of large scale, collaborative science and improve the visibility of Latin American science It may provide a useful paradigm for developing further e-Science initiatives in Latin America and other emerging regions.
The human proteome is enriched in proteins that do not fold into a stable 3D structure. These intrinsically disordered proteins (IDPs) spontaneously fluctuate between a large number of configurations in their native form. Remarkably, the disorder doe s not lead to dysfunction as with denatured folded proteins. In fact, unlike denatured proteins, recent evidences strongly suggest that multiple biological functions stem from such structural plasticity. Here, focusing on the nanoscopic length-scale, we review the latest advances in IDP research and discuss some of the future directions in this highly promising field.
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic reso lution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in a wide range of applications, such as virtual screening and drug design. In this survey, we first give an ov erview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e., molecular property prediction and molecule generation. We then discuss common data resources, molecule representations and benchmark platforms. Furthermore, to summarize the progress of AI in drug discovery, we present the relevant AI techniques including model architectures and learning paradigms in the papers surveyed. We expect that this survey will serve as a guide for researchers who are interested in working at the interface of artificial intelligence and drug discovery. We also provide a GitHub repository (https://github.com/dengjianyuan/Survey_AI_Drug_Discovery) with the collection of papers and codes, if applicable, as a learning resource, which is regularly updated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا