ترغب بنشر مسار تعليمي؟ اضغط هنا

Artificial Intelligence in Drug Discovery: Applications and Techniques

112   0   0.0 ( 0 )
 نشر من قبل Zhibo Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in a wide range of applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e., molecular property prediction and molecule generation. We then discuss common data resources, molecule representations and benchmark platforms. Furthermore, to summarize the progress of AI in drug discovery, we present the relevant AI techniques including model architectures and learning paradigms in the papers surveyed. We expect that this survey will serve as a guide for researchers who are interested in working at the interface of artificial intelligence and drug discovery. We also provide a GitHub repository (https://github.com/dengjianyuan/Survey_AI_Drug_Discovery) with the collection of papers and codes, if applicable, as a learning resource, which is regularly updated.

قيم البحث

اقرأ أيضاً

Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term `AI is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.
We outline recent developments in artificial intelligence (AI) and machine learning (ML) techniques for integrative structural biology of intrinsically disordered proteins (IDP) ensembles. IDPs challenge the traditional protein structure-function par adigm by adapting their conformations in response to specific binding partners leading them to mediate diverse, and often complex cellular functions such as biological signaling, self organization and compartmentalization. Obtaining mechanistic insights into their function can therefore be challenging for traditional structural determination techniques. Often, scientists have to rely on piecemeal evidence drawn from diverse experimental techniques to characterize their functional mechanisms. Multiscale simulations can help bridge critical knowledge gaps about IDP structure function relationships - however, these techniques also face challenges in resolving emergent phenomena within IDP conformational ensembles. We posit that scalable statistical inference techniques can effectively integrate information gleaned from multiple experimental techniques as well as from simulations, thus providing access to atomistic details of these emergent phenomena.
In the age of Artificial Intelligence and automation, machines have taken over many key managerial tasks. Replacing managers with AI systems may have a negative impact on workers outcomes. It is unclear if workers receive the same benefits from their relationships with AI systems, raising the question: What degree does the relationship between AI systems and workers impact worker outcomes? We draw on IT identity to understand the influence of identification with AI systems on job performance. From this theoretical perspective, we propose a research model and conduct a survey of 97 MTurk workers to test the model. The findings reveal that work role identity and organizational identity are key determinants of identification with AI systems. Furthermore, the findings show that identification with AI systems does increase job performance.
55 - Ping Guo 2017
Discovering pulsars is a significant and meaningful research topic in the field of radio astronomy. With the advent of astronomical instruments such as he Five-hundred-meter Aperture Spherical Telescope (FAST) in China, data volumes and data rates ar e exponentially growing. This fact necessitates a focus on artificial intelligence (AI) technologies that can perform the automatic pulsar candidate identification to mine large astronomical data sets. Automatic pulsar candidate identification can be considered as a task of determining potential candidates for further investigation and eliminating noises of radio frequency interferences or other non-pulsar signals. It is very hard to raise the performance of DCNN-based pulsar identification because the limited training samples restrict network structure to be designed deep enough for learning good features as well as the crucial class imbalance problem due to very limited number of real pulsar samples. To address these problems, we proposed a framework which combines deep convolution generative adversarial network (DCGAN) with support vector machine (SVM) to deal with imbalance class problem and to improve pulsar identification accuracy. DCGAN is used as sample generation and feature learning model, and SVM is adopted as the classifier for predicting candidates labels in the inference stage. The proposed framework is a novel technique which not only can solve imbalance class problem but also can learn discriminative feature representations of pulsar candidates instead of computing hand-crafted features in preprocessing steps too, which makes it more accurate for automatic pulsar candidate selection. Experiments on two pulsar datasets verify the effectiveness and efficiency of our proposed method.
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services, spanning from recommendation systems to robotics control and military surveillance. This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams. Designing accurate models using such data streams, to predict future insights and revolutionize the decision-taking process, inaugurates pervasive systems as a worthy paradigm for a better quality-of-life. The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems from mainly data collection to executing distributed computations with a promising alternative to centralized learning, presenting various challenges. In this context, a wise cooperation and resource scheduling should be envisaged among IoT devices (e.g., smartphones, smart vehicles) and infrastructure (e.g. edge nodes, and base stations) to avoid communication and computation overheads and ensure maximum performance. In this paper, we conduct a comprehensive survey of the recent techniques developed to overcome these resource challenges in pervasive AI systems. Specifically, we first present an overview of the pervasive computing, its architecture, and its intersection with artificial intelligence. We then review the background, applications and performance metrics of AI, particularly Deep Learning (DL) and online learning, running in a ubiquitous system. Next, we provide a deep literature review of communication-efficient techniques, from both algorithmic and system perspectives, of distributed inference, training and online learning tasks across the combination of IoT devices, edge devices and cloud servers. Finally, we discuss our future vision and research challenges.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا