ﻻ يوجد ملخص باللغة العربية
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.
Comprehensive knowledge of protein-ligand interactions should provide a useful basis for annotating protein functions, studying protein evolution, engineering enzymatic activity, and designing drugs. To investigate the diversity and universality of l
The knowledge of potentially druggable binding sites on proteins is an important preliminary step towards the discovery of novel drugs. The computational prediction of such areas can be boosted by following the recent major advances in the deep learn
We outline recent developments in artificial intelligence (AI) and machine learning (ML) techniques for integrative structural biology of intrinsically disordered proteins (IDP) ensembles. IDPs challenge the traditional protein structure-function par
The prion protein (PrP) binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH=7.4. Recent experiments show that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square planar coordinat
Sm proteins were discovered nearly 20 years ago as a group of small antigenic proteins ($approx$ 90-120 residues). Since then, an extensive amount of biochemical and genetic data have illuminated the crucial roles of these proteins in forming ribonuc