ﻻ يوجد ملخص باللغة العربية
Person re-identification (Re-ID) benefits greatly from the accurate annotations of existing datasets (e.g., CUHK03 [1] and Market-1501 [2]), which are quite expensive because each image in these datasets has to be assigned with a proper label. In this work, we ease the annotation of Re-ID by replacing the accurate annotation with inaccurate annotation, i.e., we group the images into bags in terms of time and assign a bag-level label for each bag. This greatly reduces the annotation effort and leads to the creation of a large-scale Re-ID benchmark called SYSU-30$k$. The new benchmark contains $30k$ individuals, which is about $20$ times larger than CUHK03 ($1.3k$ individuals) and Market-1501 ($1.5k$ individuals), and $30$ times larger than ImageNet ($1k$ categories). It sums up to 29,606,918 images. Learning a Re-ID model with bag-level annotation is called the weakly supervised Re-ID problem. To solve this problem, we introduce a differentiable graphical model to capture the dependencies from all images in a bag and generate a reliable pseudo label for each person image. The pseudo label is further used to supervise the learning of the Re-ID model. When compared with the fully supervised Re-ID models, our method achieves state-of-the-art performance on SYSU-30$k$ and other datasets. The code, dataset, and pretrained model will be available at url{https://github.com/wanggrun/SYSU-30k}.
Deep learning-based person re-identification (Re-ID) has made great progress and achieved high performance recently. In this paper, we make the first attempt to examine the vulnerability of current person Re-ID models against a dangerous attack metho
Person search aims at localizing and identifying a query person from a gallery of uncropped scene images. Different from person re-identification (re-ID), its performance also depends on the localization accuracy of a pedestrian detector. The state-o
Learning cross-view consistent feature representation is the key for accurate vehicle Re-identification (ReID), since the visual appearance of vehicles changes significantly under different viewpoints. To this end, most existing approaches resort to
In a conventional domain adaptation person Re-identification (Re-ID) task, both the training and test images in target domain are collected under the sunny weather. However, in reality, the pedestrians to be retrieved may be obtained under severe wea
Person re-identification (Re-ID) aims at retrieving an input person image from a set of images captured by multiple cameras. Although recent Re-ID methods have made great success, most of them extract features in terms of the attributes of clothing (