ﻻ يوجد ملخص باللغة العربية
In a conventional domain adaptation person Re-identification (Re-ID) task, both the training and test images in target domain are collected under the sunny weather. However, in reality, the pedestrians to be retrieved may be obtained under severe weather conditions such as hazy, dusty and snowing, etc. This paper proposes a novel Interference Suppression Model (ISM) to deal with the interference caused by the hazy weather in domain adaptation person Re-ID. A teacherstudent model is used in the ISM to distill the interference information at the feature level by reducing the discrepancy between the clear and the hazy intrinsic similarity matrix. Furthermore, in the distribution level, the extra discriminator is introduced to assist the student model make the interference feature distribution more clear. The experimental results show that the proposed method achieves the superior performance on two synthetic datasets than the stateof-the-art methods. The related code will be released online https://github.com/pangjian123/ISM-ReID.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a singl
Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domains knowledge to improve the models discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging be
This article studies the domain adaptation problem in person re-identification (re-ID) under a learning via translation framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised
Cross-domain person re-identification (re-ID) is challenging due to the bias between training and testing domains. We observe that if backgrounds in the training and testing datasets are very different, it dramatically introduces difficulties to extr
In recent years, supervised person re-identification (re-ID) models have received increasing studies. However, these models trained on the source domain always suffer dramatic performance drop when tested on an unseen domain. Existing methods are pri