ترغب بنشر مسار تعليمي؟ اضغط هنا

Re-ID Driven Localization Refinement for Person Search

269   0   0.0 ( 0 )
 نشر من قبل Chuchu Han
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Person search aims at localizing and identifying a query person from a gallery of uncropped scene images. Different from person re-identification (re-ID), its performance also depends on the localization accuracy of a pedestrian detector. The state-of-the-art methods train the detector individually, and the detected bounding boxes may be sub-optimal for the following re-ID task. To alleviate this issue, we propose a re-ID driven localization refinement framework for providing the refined detection boxes for person search. Specifically, we develop a differentiable ROI transform layer to effectively transform the bounding boxes from the original images. Thus, the box coordinates can be supervised by the re-ID training other than the original detection task. With this supervision, the detector can generate more reliable bounding boxes, and the downstream re-ID model can produce more discriminative embeddings based on the refined person localizations. Extensive experimental results on the widely used benchmarks demonstrate that our proposed method performs favorably against the state-of-the-art person search methods.



قيم البحث

اقرأ أيضاً

Deep learning-based person re-identification (Re-ID) has made great progress and achieved high performance recently. In this paper, we make the first attempt to examine the vulnerability of current person Re-ID models against a dangerous attack metho d, ie, the universal adversarial perturbation (UAP) attack, which has been shown to fool classification models with a little overhead. We propose a emph{more universal} adversarial perturbation (MUAP) method for both image-agnostic and model-insensitive person Re-ID attack. Firstly, we adopt a list-wise attack objective function to disrupt the similarity ranking list directly. Secondly, we propose a model-insensitive mechanism for cross-model attack. Extensive experiments show that the proposed attack approach achieves high attack performance and outperforms other state of the arts by large margin in cross-model scenario. The results also demonstrate the vulnerability of current Re-ID models to MUAP and further suggest the need of designing more robust Re-ID models.
200 - Yongxing Dai , Jun Liu , Yifan Sun 2021
Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domains knowledge to improve the models discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging be tween the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains representations on-the-fly by mixing the source and target domains hidden representations using two domain factors. Based on the shortest geodesic path definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.
Person re-identification (Re-ID) aims at retrieving an input person image from a set of images captured by multiple cameras. Although recent Re-ID methods have made great success, most of them extract features in terms of the attributes of clothing ( e.g., color, texture). However, it is common for people to wear black clothes or be captured by surveillance systems in low light illumination, in which cases the attributes of the clothing are severely missing. We call this problem the Black Re-ID problem. To solve this problem, rather than relying on the clothing information, we propose to exploit head-shoulder features to assist person Re-ID. The head-shoulder adaptive attention network (HAA) is proposed to learn the head-shoulder feature and an innovative ensemble method is designed to enhance the generalization of our model. Given the input person image, the ensemble method would focus on the head-shoulder feature by assigning a larger weight if the individual insides the image is in black clothing. Due to the lack of a suitable benchmark dataset for studying the Black Re-ID problem, we also contribute the first Black-reID dataset, which contains 1274 identities in training set. Extensive evaluations on the Black-reID, Market1501 and DukeMTMC-reID datasets show that our model achieves the best result compared with the state-of-the-art Re-ID methods on both Black and conventional Re-ID problems. Furthermore, our method is also proved to be effective in dealing with person Re-ID in similar clothing. Our code and dataset are avaliable on https://github.com/xbq1994/.
Cross-modal person re-identification (Re-ID) is critical for modern video surveillance systems. The key challenge is to align inter-modality representations according to semantic information present for a person and ignore background information. In this work, we present AXM-Net, a novel CNN based architecture designed for learning semantically aligned visual and textual representations. The underlying building block consists of multiple streams of feature maps coming from visual and textual modalities and a novel learnable context sharing semantic alignment network. We also propose complementary intra modal attention learning mechanisms to focus on more fine-grained local details in the features along with a cross-modal affinity loss for robust feature matching. Our design is unique in its ability to implicitly learn feature alignments from data. The entire AXM-Net can be trained in an end-to-end manner. We report results on both person search and cross-modal Re-ID tasks. Extensive experimentation validates the proposed framework and demonstrates its superiority by outperforming the current state-of-the-art methods by a significant margin.
112 - Yongxing Dai , Jun Liu , Yan Bai 2020
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data. To handle this problem, some recent works adopt clustering algorithms to off-line generate pseudo label s, which can then be used as the supervision signal for on-line feature learning in the target domain. However, the off-line generated labels often contain lots of noise that significantly hinders the discriminability of the on-line learned features, and thus limits the final UDA re-ID performance. To this end, we propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase, to alternatively boost the label purity and feature discriminability in the target domain for more reliable re-ID. Specifically, at the off-line phase, a new hierarchical clustering scheme is proposed, which selects representative prototypes for every coarse cluster. Thus, labels can be effectively refined by using the inherent hierarchical information of person images. Besides, at the on-line phase, we propose an instant memory spread-out (IM-spread-out) regularization, that takes advantage of the proposed instant memory bank to store sample features of the entire dataset and enable spread-out feature learning over the entire training data instantly. Our Dual-Refinement method reduces the influence of noisy labels and refines the learned features within the alternative training process. Experiments demonstrate that our method outperforms the state-of-the-art methods by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا