ﻻ يوجد ملخص باللغة العربية
Let $K$ be a number field, and $S$ a finite set of places in $K$ containing all infinite places. We present an implementation for solving the $S$-unit equation $x + y = 1$, $x,y inmathscr{O}_{K,S}^times$ in the computer algebra package SageMath. This paper outlines the mathematical basis for the implementation. We discuss and reference the results of extensive computations, including exponent bounds for solutions in many fields of small degree for small sets $S$. As an application, we prove an asymptotic version of Fermats Last Theorem for totally real cubic number fields with bounded discriminant where 2 is totally ramified. In addition, we use the implementation to find all solutions to some cubic Ramanujan-Nagell equations.
A new technique was recently developed to approximate the solution of the Schroedinger equation. This approximation (dubbed ERS) is shown to yield a better accuracy than the WKB-approximation. Here, we review the ERS approximation and its application
Quadratic functions have applications in cryptography. In this paper, we investigate the modular quadratic equation $$ ax^2+bx+c=0 quad (mod ,, 2^n), $$ and provide a complete analysis of it. More precisely, we determine when this equation has a solu
We describe the completed local rings of the trianguline variety at certain points of integral weights in terms of completed local rings of algebraic varieties related to Grothendiecks simultaneous resolution of singularities. We derive several local
We study several variants of Euler sums by using the methods of contour integration and residue theorem. These variants exhibit nice properties such as closed forms, reduction, etc., like classical Euler sums. In addition, we also define a variant of
A perfect cuboid is a rectangular parallelepiped whose all linear extents are given by integer numbers, i. e. its edges, its face diagonals, and its space diagonal are of integer lengths. None of perfect cuboids is known thus far. Their non-existence