ﻻ يوجد ملخص باللغة العربية
Quadratic functions have applications in cryptography. In this paper, we investigate the modular quadratic equation $$ ax^2+bx+c=0 quad (mod ,, 2^n), $$ and provide a complete analysis of it. More precisely, we determine when this equation has a solution and in the case that it has a solution, we not only determine the number of solutions, but also give the set of solutions in $O(n)$ time. One of the interesting results of our research is that, when this equation has a solution, then the number of solutions is a power of two.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the p
In this paper, we prove that the only primitive solutions of the equation $a^2+3b^6=c^n$ for $ngeq 3$ are $(a,b,c,n)=(pm 47,pm 2,pm 7,4)$. Our proof is based on the modularity of Galois representations of $mathbb Q$-curves and the work of Ellenberg f
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
Let $K$ be a number field, and $S$ a finite set of places in $K$ containing all infinite places. We present an implementation for solving the $S$-unit equation $x + y = 1$, $x,y inmathscr{O}_{K,S}^times$ in the computer algebra package SageMath. This
This work determine the entire family of positive integer solutions of the diophantine equation. The solution is described in terms of $frac{(m-1)(m+n-2)}{2} $ or $frac{(m-1)(m+n-1)}{2}$ positive parameters depending on $n$ even or odd. We find the s