ﻻ يوجد ملخص باللغة العربية
We study several variants of Euler sums by using the methods of contour integration and residue theorem. These variants exhibit nice properties such as closed forms, reduction, etc., like classical Euler sums. In addition, we also define a variant of multiple zeta values of level 2, and give some identities on relations between these variants of Euler sums and the variant of multiple zeta values.
In this paper, we use Abels summation formula to evaluate several quadratic and cubic sums of the form: [{F_N}left( {A,B;x} right) := sumlimits_{n = 1}^N {left( {A - {A_n}} right)left( {B - {B_n}} right){x^n}} ,;x in [ - 1,1]] and [Fleft( {A,B,zeta (
By using various expansions of the parametric digamma function and the method of residue computations, we study three variants of the linear Euler sums, related Hoffmans double $t$-values and Kaneko-Tsumuras double $T$-values, and establish several s
In this paper, we study the alternating Euler $T$-sums and related sums by using the method of contour integration. We establish the explicit formulas for all linear and quadratic Euler $T$-sums and related sums. Some interesting new consequences and illustrative examples are considered.
The explicit formulas expressing harmonic sums via alternating Euler sums (colored multiple zeta values) are given, and some explicit evaluations are given as applications.
We define a new kind of classical digamma function, and establish its some fundamental identities. Then we apply the formulas obtained, and extend tools developed by Flajolet and Salvy to study more general Euler type sums. The main results of Flajol