ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning

131   0   0.0 ( 0 )
 نشر من قبل Qihang Lin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Min-max problems have broad applications in machine learning, including learning with non-decomposable loss and learning with robustness to data distribution. Convex-concave min-max problem is an active topic of research with efficient algorithms and sound theoretical foundations developed. However, it remains a challenge to design provably efficient algorithms for non-convex min-max problems with or without smoothness. In this paper, we study a family of non-convex min-max problems, whose objective function is weakly convex in the variables of minimization and is concave in the variables of maximization. We propose a proximally guided stochastic subgradient method and a proximally guided stochastic variance-reduced method for the non-smooth and smooth instances, respectively, in this family of problems. We analyze the time complexities of the proposed methods for finding a nearly stationary point of the outer minimization problem corresponding to the min-max problem.


قيم البحث

اقرأ أيضاً

We provide improved convergence rates for constrained convex-concave min-max problems and monotone variational inequalities with higher-order smoothness. In min-max settings where the $p^{th}$-order derivatives are Lipschitz continuous, we give an al gorithm HigherOrderMirrorProx that achieves an iteration complexity of $O(1/T^{frac{p+1}{2}})$ when given access to an oracle for finding a fixed point of a $p^{th}$-order equation. We give analogous rates for the weak monotone variational inequality problem. For $p>2$, our results improve upon the iteration complexity of the first-order Mirror Prox method of Nemirovski [2004] and the second-order method of Monteiro and Svaiter [2012]. We further instantiate our entire algorithm in the unconstrained $p=2$ case.
The min-max optimization problem, also known as the saddle point problem, is a classical optimization problem which is also studied in the context of zero-sum games. Given a class of objective functions, the goal is to find a value for the argument w hich leads to a small objective value even for the worst case function in the given class. Min-max optimization problems have recently become very popular in a wide range of signal and data processing applications such as fair beamforming, training generative adversarial networks (GANs), and robust machine learning, to just name a few. The overarching goal of this article is to provide a survey of recent advances for an important subclass of min-max problem, where the minimization and maximization problems can be non-convex and/or non-concave. In particular, we will first present a number of applications to showcase the importance of such min-max problems; then we discuss key theoretical challenges, and provide a selective review of some exciting recent theoretical and algorithmic advances in tackling non-convex min-max problems. Finally, we will point out open questions and future research directions.
We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. W e establish a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2}right)$ for deterministic oracles, where $epsilon$ defines the level of approximate stationarity and $kappa$ is the condition number. Our analysis shows that the upper bound achieved in (Lin et al., 2020b) is optimal in the $epsilon$ and $kappa$ dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2} + kappa^{1/3}epsilon^{-4}right)$. It suggests that there is a significant gap between the upper bound $mathcal{O}(kappa^3 epsilon^{-4})$ in (Lin et al., 2020a) and our lower bound in the condition number dependence.
Compared to ordinary function minimization problems, min-max optimization algorithms encounter far greater challenges because of the existence of periodic cycles and similar phenomena. Even though some of these behaviors can be overcome in the convex -concave regime, the general case is considerably more difficult. On that account, we take an in-depth look at a comprehensive class of state-of-the art algorithms and prevalent heuristics in non-convex / non-concave problems, and we establish the following general results: a) generically, the algorithms limit points are contained in the ICT sets of a common, mean-field system; b) the attractors of this system also attract the algorithms in question with arbitrarily high probability; and c) all algorithms avoid the systems unstable sets with probability 1. On the surface, this provides a highly optimistic outlook for min-max algorithms; however, we show that there exist spurious attractors that do not contain any stationary points of the problem under study. In this regard, our work suggests that existing min-max algorithms may be subject to inescapable convergence failures. We complement our theoretical analysis by illustrating such attractors in simple, two-dimensional, almost bilinear problems.
139 - Yan Yan , Yi Xu , Qihang Lin 2020
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it ob jective gap}. However, its extension to solving stochastic min-max problems with strong convexity and strong concavity still remains open, and it is still unclear whether a fast rate of $O(1/T)$ for the {it duality gap} is achievable for stochastic min-max optimization under strong convexity and strong concavity. Although some recent studies have proposed stochastic algorithms with fast convergence rates for min-max problems, they require additional assumptions about the problem, e.g., smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max problems, without imposing any additional assumption about smoothness or the functions structure. To the best of our knowledge, our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O(1/T)$ for the duality gap of general SCSC min-max problems. We emphasize that such generalization of Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC min-max problems is non-trivial and requires novel technical analysis. Moreover, we notice that the key lemma can also be used for proving the convergence of Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to a nearly optimal complexity without resorting to smoothness or other structural conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا