ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization

75   0   0.0 ( 0 )
 نشر من قبل Haochuan Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. We establish a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2}right)$ for deterministic oracles, where $epsilon$ defines the level of approximate stationarity and $kappa$ is the condition number. Our analysis shows that the upper bound achieved in (Lin et al., 2020b) is optimal in the $epsilon$ and $kappa$ dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2} + kappa^{1/3}epsilon^{-4}right)$. It suggests that there is a significant gap between the upper bound $mathcal{O}(kappa^3 epsilon^{-4})$ in (Lin et al., 2020a) and our lower bound in the condition number dependence.

قيم البحث

اقرأ أيضاً

This paper studies the complexity for finding approximate stationary points of nonconvex-strongly-concave (NC-SC) smooth minimax problems, in both general and averaged smooth finite-sum settings. We establish nontrivial lower complexity bounds of $Om ega(sqrt{kappa}Delta Lepsilon^{-2})$ and $Omega(n+sqrt{nkappa}Delta Lepsilon^{-2})$ for the two settings, respectively, where $kappa$ is the condition number, $L$ is the smoothness constant, and $Delta$ is the initial gap. Our result reveals substantial gaps between these limits and best-known upper bounds in the literature. To close these gaps, we introduce a generic acceleration scheme that deploys existing gradient-based methods to solve a sequence of crafted strongly-convex-strongly-concave subproblems. In the general setting, the complexity of our proposed algorithm nearly matches the lower bound; in particular, it removes an additional poly-logarithmic dependence on accuracy present in previous works. In the averaged smooth finite-sum setting, our proposed algorithm improves over previous algorithms by providing a nearly-tight dependence on the condition number.
We provide improved convergence rates for constrained convex-concave min-max problems and monotone variational inequalities with higher-order smoothness. In min-max settings where the $p^{th}$-order derivatives are Lipschitz continuous, we give an al gorithm HigherOrderMirrorProx that achieves an iteration complexity of $O(1/T^{frac{p+1}{2}})$ when given access to an oracle for finding a fixed point of a $p^{th}$-order equation. We give analogous rates for the weak monotone variational inequality problem. For $p>2$, our results improve upon the iteration complexity of the first-order Mirror Prox method of Nemirovski [2004] and the second-order method of Monteiro and Svaiter [2012]. We further instantiate our entire algorithm in the unconstrained $p=2$ case.
This paper focuses on stochastic methods for solving smooth non-convex strongly-concave min-max problems, which have received increasing attention due to their potential applications in deep learning (e.g., deep AUC maximization). However, most of th e existing algorithms are slow in practice, and their analysis revolves around the convergence to a nearly stationary point. We consider leveraging the Polyak-L ojasiewicz (PL) condition to design faster stochastic algorithms with stronger convergence guarantee. Although PL condition has been utilized for designing many stochastic minimization algorithms, their applications for non-convex min-max optimization remains rare. In this paper, we propose and analyze proximal epoch-based methods, and establish fast convergence in terms of both {bf the primal objective gap and the duality gap}. Our analysis is interesting in threefold: (i) it is based on a novel Lyapunov function that consists of the primal objective gap and the duality gap of a regularized function; (ii) it only requires a weaker PL condition for establishing the primal objective convergence than that required for the duality gap convergence; (iii) it yields the optimal dependence on the accuracy level $epsilon$, i.e., $O(1/epsilon)$. We also make explicit the dependence on the problem parameters and explore regions of weak convexity parameter that lead to improved dependence on condition numbers. Experiments on deep AUC maximization demonstrate the effectiveness of our methods. Our method (MaxAUC) achieved an AUC of 0.922 on private testing set on {bf CheXpert competition}.
Min-max problems have broad applications in machine learning, including learning with non-decomposable loss and learning with robustness to data distribution. Convex-concave min-max problem is an active topic of research with efficient algorithms and sound theoretical foundations developed. However, it remains a challenge to design provably efficient algorithms for non-convex min-max problems with or without smoothness. In this paper, we study a family of non-convex min-max problems, whose objective function is weakly convex in the variables of minimization and is concave in the variables of maximization. We propose a proximally guided stochastic subgradient method and a proximally guided stochastic variance-reduced method for the non-smooth and smooth instances, respectively, in this family of problems. We analyze the time complexities of the proposed methods for finding a nearly stationary point of the outer minimization problem corresponding to the min-max problem.
139 - Yan Yan , Yi Xu , Qihang Lin 2020
Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it ob jective gap}. However, its extension to solving stochastic min-max problems with strong convexity and strong concavity still remains open, and it is still unclear whether a fast rate of $O(1/T)$ for the {it duality gap} is achievable for stochastic min-max optimization under strong convexity and strong concavity. Although some recent studies have proposed stochastic algorithms with fast convergence rates for min-max problems, they require additional assumptions about the problem, e.g., smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max problems, without imposing any additional assumption about smoothness or the functions structure. To the best of our knowledge, our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O(1/T)$ for the duality gap of general SCSC min-max problems. We emphasize that such generalization of Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC min-max problems is non-trivial and requires novel technical analysis. Moreover, we notice that the key lemma can also be used for proving the convergence of Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to a nearly optimal complexity without resorting to smoothness or other structural conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا