ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization

140   0   0.0 ( 0 )
 نشر من قبل Yan Yan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Epoch gradient descent method (a.k.a. Epoch-GD) proposed by Hazan and Kale (2011) was deemed a breakthrough for stochastic strongly convex minimization, which achieves the optimal convergence rate of $O(1/T)$ with $T$ iterative updates for the {it objective gap}. However, its extension to solving stochastic min-max problems with strong convexity and strong concavity still remains open, and it is still unclear whether a fast rate of $O(1/T)$ for the {it duality gap} is achievable for stochastic min-max optimization under strong convexity and strong concavity. Although some recent studies have proposed stochastic algorithms with fast convergence rates for min-max problems, they require additional assumptions about the problem, e.g., smoothness, bi-linear structure, etc. In this paper, we bridge this gap by providing a sharp analysis of epoch-wise stochastic gradient descent ascent method (referred to as Epoch-GDA) for solving strongly convex strongly concave (SCSC) min-max problems, without imposing any additional assumption about smoothness or the functions structure. To the best of our knowledge, our result is the first one that shows Epoch-GDA can achieve the optimal rate of $O(1/T)$ for the duality gap of general SCSC min-max problems. We emphasize that such generalization of Epoch-GD for strongly convex minimization problems to Epoch-GDA for SCSC min-max problems is non-trivial and requires novel technical analysis. Moreover, we notice that the key lemma can also be used for proving the convergence of Epoch-GDA for weakly-convex strongly-concave min-max problems, leading to a nearly optimal complexity without resorting to smoothness or other structural conditions.

قيم البحث

اقرأ أيضاً

Many recent AI architectures are inspired by zero-sum games, however, the behavior of their dynamics is still not well understood. Inspired by this, we study standard gradient descent ascent (GDA) dynamics in a specific class of non-convex non-concav e zero-sum games, that we call hidden zero-sum games. In this class, players control the inputs of smooth but possibly non-linear functions whose outputs are being applied as inputs to a convex-concave game. Unlike general zero-sum games, these games have a well-defined notion of solution; outcomes that implement the von-Neumann equilibrium of the hidden convex-concave game. We prove that if the hidden game is strictly convex-concave then vanilla GDA converges not merely to local Nash, but typically to the von-Neumann solution. If the game lacks strict convexity properties, GDA may fail to converge to any equilibrium, however, by applying standard regularization techniques we can prove convergence to a von-Neumann solution of a slightly perturbed zero-sum game. Our convergence guarantees are non-local, which as far as we know is a first-of-its-kind type of result in non-convex non-concave games. Finally, we discuss connections of our framework with generative adversarial networks.
148 - Yifan Hu , Siqi Zhang , Xin Chen 2020
Conditional Stochastic Optimization (CSO) covers a variety of applications ranging from meta-learning and causal inference to invariant learning. However, constructing unbiased gradient estimates in CSO is challenging due to the composition structure . As an alternative, we propose a biased stochastic gradient descent (BSGD) algorithm and study the bias-variance tradeoff under different structural assumptions. We establish the sample complexities of BSGD for strongly convex, convex, and weakly convex objectives, under smooth and non-smooth conditions. We also provide matching lower bounds of BSGD for convex CSO objectives. Extensive numerical experiments are conducted to illustrate the performance of BSGD on robust logistic regression, model-agnostic meta-learning (MAML), and instrumental variable regression (IV).
We provide improved convergence rates for constrained convex-concave min-max problems and monotone variational inequalities with higher-order smoothness. In min-max settings where the $p^{th}$-order derivatives are Lipschitz continuous, we give an al gorithm HigherOrderMirrorProx that achieves an iteration complexity of $O(1/T^{frac{p+1}{2}})$ when given access to an oracle for finding a fixed point of a $p^{th}$-order equation. We give analogous rates for the weak monotone variational inequality problem. For $p>2$, our results improve upon the iteration complexity of the first-order Mirror Prox method of Nemirovski [2004] and the second-order method of Monteiro and Svaiter [2012]. We further instantiate our entire algorithm in the unconstrained $p=2$ case.
Despite the strong theoretical guarantees that variance-reduced finite-sum optimization algorithms enjoy, their applicability remains limited to cases where the memory overhead they introduce (SAG/SAGA), or the periodic full gradient computation they require (SVRG/SARAH) are manageable. A promising approach to achieving variance reduction while avoiding these drawbacks is the use of importance sampling instead of control variates. While many such methods have been proposed in the literature, directly proving that they improve the convergence of the resulting optimization algorithm has remained elusive. In this work, we propose an importance-sampling-based algorithm we call SRG (stochastic reweighted gradient). We analyze the convergence of SRG in the strongly-convex case and show that, while it does not recover the linear rate of control variates methods, it provably outperforms SGD. We pay particular attention to the time and memory overhead of our proposed method, and design a specialized red-black tree allowing its efficient implementation. Finally, we present empirical results to support our findings.
Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice for many applications (e.g., GAN training), the majority of existing theoretical analyses f ocus on simultaneous algorithms for convenience of analysis. In this paper, we study alternating gradient descent-ascent (Alt-GDA) in minimax games and show that Alt-GDA is superior to its simultaneous counterpart (Sim-GDA) in many settings. In particular, we prove that Alt-GDA achieves a near-optimal local convergence rate for strongly convex-strongly concave (SCSC) problems while Sim-GDA converges at a much slower rate. To our knowledge, this is the emph{first} result of any setting showing that Alt-GDA converges faster than Sim-GDA by more than a constant. We further prove that the acceleration effect of alternating updates remains when the minimax problem has only strong concavity in the dual variables. Lastly, we adapt the theory of integral quadratic constraints and show that Alt-GDA attains the same rate emph{globally} for a class of SCSC minimax problems. Numerical experiments on quadratic minimax games validate our claims. Empirically, we demonstrate that alternating updates speed up GAN training significantly and the use of optimism only helps for simultaneous algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا