ﻻ يوجد ملخص باللغة العربية
Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cramer-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.
We analyze the fundamental resolution of incoherent optical point sources from the perspective of a quantum detection problem: deciding whether the optical field on the image plane is generated by one source or two weaker sources with arbitrary separ
We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightne
Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently,
Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by the means of optical charac
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures or even single molecules. While these techniques rely on coherent scattering, incoherent processes like Compton scatt