ﻻ يوجد ملخص باللغة العربية
Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by the means of optical characterization. Second-order autocorrelation is a cornerstone measurement that is particularly time-consuming to realize on a large scale. We have implemented supervised machine learning-based classification of quantum emitters as single or not-single based on their sparse autocorrelation data. Our method yields a classification accuracy of over 90% within an integration time of less than a second, realizing roughly a hundredfold speedup compared to the conventional, Levenberg-Marquardt approach. We anticipate that machine learning-based classification will provide a unique route to enable rapid and scalable assembly of quantum nanophotonic devices and can be directly extended to other quantum optical measurements.
The ESAs X-ray Multi-Mirror Mission (XMM-Newton) created a new, high quality version of the XMM-Newton serendipitous source catalogue, 4XMM-DR9, which provides a wealth of information for observed sources. The 4XMM-DR9 catalogue is correlated with th
Manipulation of light-induced magnetization has become a fundamentally hot topic with a potentially high impact for atom trapping, confocal and magnetic resonance microscopy, and data storage. However, the control of the magnetization orientation mai
In general, the typical approach to discriminate antibunching, bunching or superbunching categories make use of calculating the second-order coherence function ${g^{(2)}}(tau )$ of light. Although the classical light sources correspond to the specifi
We propose the concept of one-sided quantum interference based on non-Hermitian metasurfaces.By designing bianisotropic metasurfaces with a non-Hermitian exceptional point, we show that quantum interference can exist only on only one side but not ano
Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly d