ﻻ يوجد ملخص باللغة العربية
We analyze the fundamental resolution of incoherent optical point sources from the perspective of a quantum detection problem: deciding whether the optical field on the image plane is generated by one source or two weaker sources with arbitrary separation. We investigate the detection performances of two measurement methods recently proposed by us to enhance the estimation of the separation. For the detection problem, we show that the method of binary spatial-mode demultiplexing is quantum-optimal for all values of separations, while the method of image-inversion interferometry is near-optimal for sub-Rayleigh separations. Unlike the proposal by Helstrom, our schemes do not require the separation to be given and can offer that information as a bonus in the event of a successful detection. For comparison, we also demonstrate the supremacy of our schemes over direct imaging for sub-Rayleigh separations. These results demonstrate that simple linear optical measurements can offer supremal performances for both detection and estimation.
We analyze the fundamental quantum limit of the resolution of an optical imaging system from the perspective of the detection problem of deciding whether the optical field in the image plane is generated by one incoherent on-axis source with brightne
Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly d
We derive the maximum fidelity attainable for teleportation using a shared pair of d-level systems in an arbitrary pure state. This derivation provides a complete set of necessary and sufficient conditions for optimal teleportation protocols. We also
Conventional incoherent imaging based on measuring the spatial intensity distribution in the image plane faces the resolution hurdle described by the Rayleigh diffraction criterion. Here, we demonstrate theoretically using the concept of the Fisher i
We calculate the quantum Fisher information (QFI) for estimating, using a circular imaging aperture, the length of a uniformly bright incoherent line source with a fixed mid-point and the radius of a uniformly bright incoherent disk shaped source wit