ترغب بنشر مسار تعليمي؟ اضغط هنا

Evanescent single-molecule biosensing with quantum limited precision

89   0   0.0 ( 0 )
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and nano-sized plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce an optical nanofibre based evanescent biosensor that operates at the fundamental precision limit introduced by quantisation of light. This allows a four order-of-magnitude reduction in optical intensity whilst maintaining state-of-the-art sensitivity. It enable quantum noise limited tracking of single biomolecules as small as 3.5 nm, and surface-molecule interactions to be monitored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors.


قيم البحث

اقرأ أيضاً

Understanding the human brain remains one of the most significant challenges of the 21st century. As theoretical studies continue to improve the description of the complex mechanisms that regulate biological processes, in parallel numerous experiment s are conducted to enrich or verify these theoretical predictions and with the aim of extrapolating more accurate models. In the field of magnetometers for biological application, among the various sensors proposed for this purpose, NV centers have emerged as a promising solution due to their perfect biocompatibility and the possibility of being positioned in close proximity and even inside the cell, allowing a nanometric spatial resolution. There are still many difficulties that must be overcome in order to obtain both spatial resolution and sensitivity capable of revealing the very weak biological electromagnetic fields generated by neurons (or other cells). However, over the last few years, significant improvements have been achieved in this direction, thanks to the use of innovative techniques, which allow us to hope for an early application of these sensors for the measurement of fields such as the one generated by cardiac tissue, if not, in perspective, for the nerve fibers fields. In this review, we will analyze the new results regarding the application of NV centers and we will discuss the main challenges that currently prevent these quantum sensors from reaching their full potential.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly d ecompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cramer-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.
Deterministically integrating single solid-state quantum emitters with photonic nanostructures serves as a key enabling resource in the context of photonic quantum technology. Due to the random spatial location of many widely-used solid-state quantum emitters, a number of positoning approaches for locating the quantum emitters before nanofabrication have been explored in the last decade. Here, we review the working principles of several nanoscale positioning methods and the most recent progress in this field, covering techniques including atomic force microscopy, scanning electron microscopy, confocal microscopy with textit{in situ} lithography, and wide-field fluorescence imaging. A selection of representative device demonstrations with high-performance is presented, including high-quality single-photon sources, bright entangled-photon pairs, strongly-coupled cavity QED systems, and other emerging applications. The challenges in applying positioning techniques to different material systems and opportunities for using these approaches for realizing large-scale quantum photonic devices are discussed.
There has been significant interest in imaging and focusing schemes that use evanescent waves to beat the diffraction limit, such as those employing negative refractive index materials or hyperbolic metamaterials. The fundamental issue with all such schemes is that the evanescent waves quickly decay between the imaging system and sample, leading to extremely weak field strengths. Using an entropic definition of spot size which remains well defined for arbitrary beam profiles, we derive rigorous bounds on this evanescent decay. In particular, we show that the decay length is only $w / pi e approx 0.12 w$, where $w$ is the spot width in the focal plane, or $sqrt{A} / 2 e sqrt{pi} approx 0.10 sqrt{A}$, where $A$ is the spot area. Practical evanescent imaging schemes will thus most likely be limited to focal distances less than or equal to the spot width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا