ﻻ يوجد ملخص باللغة العربية
Working with data in table form is usually considered a preparatory and tedious step in the sensemaking pipeline; a way of getting the data ready for more sophisticated visualization and analytical tools. But for many people, spreadsheets -- the quintessential table tool -- remain a critical part of their information ecosystem, allowing them to interact with their data in ways that are hidden or abstracted in more complex tools. This is particularly true for data workers: people who work with data as part of their job but do not identify as professional analysts or data scientists. We report on a qualitative study of how these workers interact with and reason about their data. Our findings show that data tables serve a broader purpose beyond data cleanup at the initial stage of a linear analytic flow: users want to see and get their hands on the underlying data throughout the analytics process, reshaping and augmenting it to support sensemaking. They reorganize, mark up, layer on levels of detail, and spawn alternatives within the context of the base data. These direct interactions and human-readable table representations form a rich and cognitively important part of building understanding of what the data mean and what they can do with it. We argue that interactive tables are an important visualization idiom in their own right; that the direct data interaction they afford offers a fertile design space for visual analytics; and that sense making can be enriched by more flexible human-data interaction than is currently supported in visual analytics tools.
Current approaches for fine-grained recognition do the following: First, recruit experts to annotate a dataset of images, optionally also collecting more structured data in the form of part annotations and bounding boxes. Second, train a model utiliz
Quantum field theory offers physicists a tremendously wide range of application; it is both a language with which a vast variety of physical processes can be discussed and also it provides a model for fundamental physics, the so-called ``standard-mod
Optimal transport has become part of the standard quantitative economics toolbox. It is the framework of choice to describe models of matching with transfers, but beyond that, it allows to: extend quantile regression; identify discrete choice models;
High-velocity dynamic actions (e.g., fling or throw) play a crucial role in our everyday interaction with deformable objects by improving our efficiency and effectively expanding our physical reach range. Yet, most prior works have tackled cloth mani
Despite the widely-spread consensus on the brain complexity, sprouts of the single neuron revolution emerged in neuroscience in the 1970s. They brought many unexpected discoveries, including grandmother or concept cells and sparse coding of informati