ترغب بنشر مسار تعليمي؟ اضغط هنا

Resilience of networks with community structure behaves as if under an external field

43   0   0.0 ( 0 )
 نشر من قبل GaoGao Dong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detecting and characterizing community structure plays a crucial role in the study of networked systems. However, there is still a lack of understanding of how community structure affects the systems resilience and stability. Here, we develop a framework to study the resilience of networks with community structure based on percolation theory. We find both analytically and numerically that the interlinks (connections between the communities) affect the percolation phase transition in a manner similar to an external field in a ferromagnetic-paramagnetic spin system. We also study the universality class by defining the analogous critical exponents $delta$ and $gamma$, and find that their values for various models and in real-world co-authors networks follow fundamental scaling relations as in physical phase transitions. The methodology and results presented here not only facilitate the study of resilience of networks but also brings a fresh perspective to the understanding of phase transitions under external fields.


قيم البحث

اقرأ أيضاً

Modern world builds on the resilience of interdependent infrastructures characterized as complex networks. Recently, a framework for analysis of interdependent networks has been developed to explain the mechanism of resilience in interdependent netwo rks. Here we extend this interdependent network model by considering flows in the networks and study the systems resilience under different attack strategies. In our model, nodes may fail due to either overload or loss of interdependency. Under the interaction between these two failure mechanisms, it is shown that interdependent scale-free networks show extreme vulnerability. The resilience of interdependent SF networks is found in our simulation much smaller than single SF network or interdependent SF networks without flows.
An indicator for presence of community structure in networks is suggested. It allows one to check whether such structures can exist, in principle, in any particular network, without a need to apply computationally cost algorithms. In this way we excl ude a large class of networks that do not possess any community structure.
Knowledge of time-variant functionality of real-world physical, social, and engineered networks is critical to the understanding of the resilience of networks facing external perturbations. The majority of existing studies, however, focus only on the topological properties of networks for resilience assessment, which does not fully capture their dynamical resilience. In this study, we evaluate and quantify network resilience based both on the functionality states of links and on topology. We propose three independent measures---the failure scaling index (FSI), the weighted degree scaling index (WDSI), and the link functionality irregularity index (LFII)---that capture macroscopic, microscopic, and temporal performance characteristics of networks. Accordingly, an integrated general resilience (GR) metric is used to assess performance loss and recovery speed in networks with time-variant functionality. We test the proposed methods in the study of traffic networks under urban flooding impacts in the context of Harris County, Texas, during Hurricane Harvey using a high-resolution dataset, which contains temporal speed of 20,000 roads every 5 minutes for 5 months. Our results show that link weights and node weighted degrees with perturbed functionality in the traffic network during flooding follow a scale-free distribution. Hence, three proposed measures capture clear resilience curves of the network as well as identify the irregularity of links. Accordingly, network performance measures and the methodology for resilience quantification reveal insights into the extent of network performance loss and recovery speed, suggesting possible improvements in network resilience in the face of external perturbations such as urban flooding.
As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associate d with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of network, which measures how easily the diffusion occurs among different communities. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods at identifying the community structure of networks. Applications on real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the obtained community structure can naturally reflect the diffusion capability of the underlying network.
121 - Zhi-Xi Wu , Zhihai Rong , 2014
Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [Muchnik, emph{et al.}, Sci. Rep. textbf{3}, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological a nd social networks [M.~E.~J. Newman, Nat. Phys. textbf{8}, 25 (2012)]. Motivated by these facts, we here consider the evolutionary Prisoners dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from social point of view) for the strategy updating under both weak- and strong-selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to playing games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in harsh environment (the action for cooperation is costly) under strong selection, while it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the fixation of cooperation under strong-selection, in contrast to the games evolving on the randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا