ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering the community structure associated with the diffusion dynamics of networks

72   0   0.0 ( 0 )
 نشر من قبل Huawei Shen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of network, which measures how easily the diffusion occurs among different communities. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods at identifying the community structure of networks. Applications on real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the obtained community structure can naturally reflect the diffusion capability of the underlying network.

قيم البحث

اقرأ أيضاً

Many real-world networks display a natural bipartite structure. It is necessary and important to study the bipartite networks by using the bipartite structure of the data. Here we propose a modification of the clustering coefficient given by the frac tion of cycles with size four in bipartite networks. Then we compare the two definitions in a special graph, and the results show that the modification one is better to character the network. Next we define a edge-clustering coefficient of bipartite networks to detect the community structure in original bipartite networks.
Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this c ommunity structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling to investigate different hierarchical levels of organization. Tests on real and artificial networks give excellent results.
It has been shown that the communities of complex networks often overlap with each other. However, there is no effective method to quantify the overlapping community structure. In this paper, we propose a metric to address this problem. Instead of as suming that one node can only belong to one community, our metric assumes that a maximal clique only belongs to one community. In this way, the overlaps between communities are allowed. To identify the overlapping community structure, we construct a maximal clique network from the original network, and prove that the optimization of our metric on the original network is equivalent to the optimization of Newmans modularity on the maximal clique network. Thus the overlapping community structure can be identified through partitioning the maximal clique network using any modularity optimization method. The effectiveness of our metric is demonstrated by extensive tests on both the artificial networks and the real world networks with known community structure. The application to the word association network also reproduces excellent results.
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this article, we consider detecting the mult i-scale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multi-scale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multi-scale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multi-scale community structure of network, as well as the translation and rotation transformations.
We demonstrate a comprehensive framework that accounts for citation dynamics of scientific papers and for the age distribution of references. We show that citation dynamics of scientific papers is nonlinear and this nonlinearity has far-reaching cons equences, such as diverging citation distributions and runaway papers. We propose a nonlinear stochastic dynamic model of citation dynamics based on link copying/redirection mechanism. The model is fully calibrated by empirical data and does not contain free parameters. This model can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا