ترغب بنشر مسار تعليمي؟ اضغط هنا

An indicator for community structure

49   0   0.0 ( 0 )
 نشر من قبل Gennady Koganov A
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An indicator for presence of community structure in networks is suggested. It allows one to check whether such structures can exist, in principle, in any particular network, without a need to apply computationally cost algorithms. In this way we exclude a large class of networks that do not possess any community structure.

قيم البحث

اقرأ أيضاً

Graph vertices are often organized into groups that seem to live fairly independently of the rest of the graph, with which they share but a few edges, whereas the relationships between group members are stronger, as shown by the large number of mutua l connections. Such groups of vertices, or communities, can be considered as independent compartments of a graph. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. The task is very hard, though, both conceptually, due to the ambiguity in the definition of community and in the discrimination of different partitions and practically, because algorithms must find ``good partitions among an exponentially large number of them. Other complications are represented by the possible occurrence of hierarchies, i.e. communities which are nested inside larger communities, and by the existence of overlaps between communities, due to the presence of nodes belonging to more groups. All these aspects are dealt with in some detail and many methods are described, from traditional approaches used in computer science and sociology to recent techniques developed mostly within statistical physics.
Modern statistical modeling is an important complement to the more traditional approach of physics where Complex Systems are studied by means of extremely simple idealized models. The Minimum Description Length (MDL) is a principled approach to stati stical modeling combining Occams razor with Information Theory for the selection of models providing the most concise descriptions. In this work, we introduce the Boltzmannian MDL (BMDL), a formalization of the principle of MDL with a parametric complexity conveniently formulated as the free-energy of an artificial thermodynamic system. In this way, we leverage on the rich theoretical and technical background of statistical mechanics, to show the crucial importance that phase transitions and other thermodynamic concepts have on the problem of statistical modeling from an information theoretic point of view. For example, we provide information theoretic justifications of why a high-temperature series expansion can be used to compute systematic approximations of the BMDL when the formalism is used to model data, and why statistically significant model selections can be identified with ordered phases when the BMDL is used to model models. To test the introduced formalism, we compute approximations of BMDL for the problem of community detection in complex networks, where we obtain a principled MDL derivation of the Girvan-Newman (GN) modularity and the Zhang-Moore (ZM) community detection method. Here, by means of analytical estimations and numerical experiments on synthetic and empirical networks, we find that BMDL-based correction terms of the GN modularity improve the quality of the detected communities and we also find an information theoretic justification of why the ZM criterion for estimation of the number of network communities is better than alternative approaches such as the bare minimization of a free energy.
136 - Zhen Su , Wei Wang , Lixiang Li 2018
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of communit y networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially-adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
132 - Heetae Kim , Sang Hoon Lee 2019
Community identification of network components enables us to understand the mesoscale clustering structure of networks. A number of algorithms have been developed to determine the most likely community structures in networks. Such a probabilistic or stochastic nature of this problem can naturally involve the ambiguity in resultant community structures. More specifically, stochastic algorithms can result in different community structures for each realization in principle. In this study, instead of trying to solve this community degeneracy problem, we turn the tables by taking the degeneracy as a chance to quantify how strong companionship each node has with other nodes. For that purpose, we define the concept of companionship inconsistency that indicates how inconsistently a node is identified as a member of a community regarding the other nodes. Analyzing model and real networks, we show that companionship inconsistency discloses unique characteristics of nodes, thus we suggest it as a new type of node centrality. In social networks, for example, companionship inconsistency can classify outsider nodes without firm community membership and promiscuous nodes with multiple connections to several communities. In infrastructure networks such as power grids, it can diagnose how the connection structure is evenly balanced in terms of power transmission. Companionship inconsistency, therefore, abstracts individual nodes intrinsic property on its relationship to a higher-order organization of the network.
We present a new layout algorithm for complex networks that combines a multi-scale approach for community detection with a standard force-directed design. Since community detection is computationally cheap, we can exploit the multi-scale approach to generate network configurations with close-to-minimal energy very fast. As a further asset, we can use the knowledge of the community structure to facilitate the interpretation of large networks, for example the network defined by protein-protein interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا