ترغب بنشر مسار تعليمي؟ اضغط هنا

Expected signatures from hadronic emission processes in the TeV spectra of BL Lac objects

72   0   0.0 ( 0 )
 نشر من قبل Andreas Zech
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The wealth of recent data from imaging air Cherenkov telescopes (IACTs), ultra-high energy cosmic-ray experiments and neutrino telescopes have fuelled a renewed interest in hadronic emission models for gamma-loud blazars. We explore physically plausible solutions for a lepto-hadronic interpretation of the stationary emission from high-frequency peaked BL Lac objects (HBLs). The modelled spectral energy distributions are then searched for specific signatures at very high energies that could help to distinguish the hadronic origin of the emission from a standard leptonic scenario. By introducing a few basic constraints on parameters of the model, such as assuming the co-acceleration of electrons and protons, we significantly reduced the number of free parameters. We then systematically explored the parameter space of the size of the emission region and its magnetic field for two bright gamma-loud HBLs, PKS 2155-304 and Mrk 421. For all solutions close to equipartition between the energy densities of protons and of the magnetic field, and with acceptable jet power and light-crossing timescales, we inspected the spectral hardening in the multi-TeV domain from proton-photon induced cascades and muon-synchrotron emission inside the source. Very-high-energy spectra simulated with the available instrument functions from the future Cherenkov Telescope Array (CTA) were evaluated for detectable features as a function of exposure time, source redshift, and flux level. Over a large range of model parameters, the spectral hardening due to internal synchrotron-pair cascades, the cascade bump, should be detectable for acceptable exposure times with the future CTA for a few nearby and bright HBLs.



قيم البحث

اقرأ أيضاً

Blazars represent the most abundant class of high-energy extragalactic $gamma$-ray sources. The subset of blazars known as BL Lac objects is on average closer to Earth and characterized by harder spectra at high energy than the whole sample. The frac tion of BL Lacs that is too dim to be detected and resolved by current $gamma$-ray telescopes is therefore expected to contribute to the high-energy isotropic diffuse $gamma$-ray background (IGRB). The IGRB has been recently measured over a wide energy range by the Large Area Telescope (LAT) on board the Gamma-ray Space Telescope ({it Fermi}). We present a new prediction of the diffuse $gamma$-ray flux due to the unresolved BL Lac blazar population. The model is built upon the spectral energy distribution and the luminosity function derived from the fraction of BL Lacs detected (and spectrally characterized) in the $gamma$-ray energy range. We focus our attention on the ${cal O}(100)$ GeV energy range, predicting the emission up to the TeV scale and taking into account the absorption on the extragalactic background light. In order to better shape the BL Lac spectral energy distribution, we combine the {it Fermi}-LAT data with Imaging Atmospheric Cerenkov Telescopes measurements of the most energetic sources. Our analysis is carried on separately for low- and intermediate-synchrotron-peaked BL Lacs on one hand, and high-synchrotron-peaked BL Lacs on the other one: we find in fact statistically different features for the two. The diffuse emission from the sum of both BL Lac classes increases from about 10$%$ of the measured IGRB at 100 MeV to $sim$100$%$ of the data level at 100 GeV. At energies greater than 100 GeV, our predictions naturally explain the IGRB data, accommodating their softening with increasing energy. Uncertainties are estimated to be within of a factor of two of the best-fit flux up to 500 GeV.
Context: We present the results of a set of observations of nine TeV detected BL Lac objects performed by the XRT and UVOT detectors on board the Swift satellite between March and December 2005. Aims: We are mainly interested in measuring the spectra l parameters, and particularly the intrinsic curvature in the X-ray band. Methods: We perform X-ray spectral analysis of observed BL Lac TeV objects using either a log-parabolic or a simple power-law model . Results: We found that many of the objects in our sample do show significant spectral curvature, whereas those having the peak of the spectral energies distribution at energies lower than ~0.1 keV show power law spectra. In these cases, however, the statistics are generally low thus preventing a good estimate of the curvature. Simultaneous UVOT observations are important to verify how X-ray spectra can be extrapolated at lower frequencies and to search for multiple emission components. Conclusions: The results of our analysis are useful for the study of possible signatures of statistical acceleration processes predicting intrinsically curved spectra and for modelling the SED of BL Lacertae objects up to TeV energies where a corresponding curvature is likely to be present.
151 - W. Zhong 2018
In this paper, we compile the very-high-energy and high-energy spectral indices of 43 BL Lac objects from the literature. Based on a simple math model, $DeltaGamma_{obs}=alpha {rm{z}}+beta $, we present evidence for the origin of an observed spectral break that is denoted by the difference between the observed very-high-energy and high-energy spectral indices, $DeltaGamma_{obs}$. We find by linear regression analysis that $alpha e 0$ and $beta e 0$. These results suggest that the extragalactic background light attenuation and the intrinsic curvature dominate on the GeV-TeV $gamma$-ray energy spectral break of BL Lac objects. We argue that the extragalactic background light attenuation is an exclusive explanation for the redshift evolution of the observed spectral break.
124 - X.X. Xie , K.R. Zhu , S.J. Kang 2020
Electrons are accelerated at the shock wave diffuse and advect outward, and subsequently drift away into the emitting region of the jet that is located in the downstream flow from the plane shock. The current work considers the acceleration of the el ectrons in the shock front. Assuming a proper boundary condition at the interface between the shock and the downstream zones, a novel particle distribution in the downstream flow is proposed in this work to reproduce the broadband spectral energy distribution of BL Lac objects. We find that (1) we can obtain the particle distribution downstream of the shock wave in four cases; (2) electrons with higher energy ($gamma>gamma_{0}$) dominate the emission spectrum; (3) the distinctly important physical parameters assumed in our model can reasonably reproduce the multi-wavelength spectrum of the high-synchrotron-peaked BL Lac object Markarian 421 (Mrk 421).
The next generation of TeV detectors is expected to have a significantly enhanced performance. It is therefore constructive to search for new TeV candidates for observation. This paper focuses on TeV candidates among the high-synchrotron-peaked BL La certae objects (HBLs) reported in the fourth catalog of active galactic nuclei detected by the Fermis Large Area Telescope, i.e., 4LAC. By cross-matching the Fermi data with radio and optical observations, we collected the multiwavelength features of 180 HBLs with known redshift. The data set contains 39 confirmed TeV sources and 141 objects whose TeV detection has not yet been reported (either not yet observed, or observed but not detected). Using two kinds of supervised machine-learning (SML) methods, we searched for new possible TeV candidates (PTCs) among the nondetected objects by assessing the similarity of their multi-wavelength properties to existing TeV-detected objects. The classification results of the two SML classifiers were combined and the 24 highest-confidence PTCs were proposed as the best candidates. We calculate, here, the 12 year averaged Fermi spectra of these PTCs and estimate their detectability by extrapolating the Fermi spectrum and including the extragalactic background light attenuation. Four candidates are suggested to have a high likelihood of being detected by the Large High Altitude Air Shower Observatory and 24 are candidates for the Cerenkov Telescope Array observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا