ترغب بنشر مسار تعليمي؟ اضغط هنا

GeV-TeV $gamma$-ray energy spectral break of BL Lac objects

152   0   0.0 ( 0 )
 نشر من قبل Yong-Gang Zheng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W. Zhong




اسأل ChatGPT حول البحث

In this paper, we compile the very-high-energy and high-energy spectral indices of 43 BL Lac objects from the literature. Based on a simple math model, $DeltaGamma_{obs}=alpha {rm{z}}+beta $, we present evidence for the origin of an observed spectral break that is denoted by the difference between the observed very-high-energy and high-energy spectral indices, $DeltaGamma_{obs}$. We find by linear regression analysis that $alpha e 0$ and $beta e 0$. These results suggest that the extragalactic background light attenuation and the intrinsic curvature dominate on the GeV-TeV $gamma$-ray energy spectral break of BL Lac objects. We argue that the extragalactic background light attenuation is an exclusive explanation for the redshift evolution of the observed spectral break.



قيم البحث

اقرأ أيضاً

Blazars represent the most abundant class of high-energy extragalactic $gamma$-ray sources. The subset of blazars known as BL Lac objects is on average closer to Earth and characterized by harder spectra at high energy than the whole sample. The frac tion of BL Lacs that is too dim to be detected and resolved by current $gamma$-ray telescopes is therefore expected to contribute to the high-energy isotropic diffuse $gamma$-ray background (IGRB). The IGRB has been recently measured over a wide energy range by the Large Area Telescope (LAT) on board the Gamma-ray Space Telescope ({it Fermi}). We present a new prediction of the diffuse $gamma$-ray flux due to the unresolved BL Lac blazar population. The model is built upon the spectral energy distribution and the luminosity function derived from the fraction of BL Lacs detected (and spectrally characterized) in the $gamma$-ray energy range. We focus our attention on the ${cal O}(100)$ GeV energy range, predicting the emission up to the TeV scale and taking into account the absorption on the extragalactic background light. In order to better shape the BL Lac spectral energy distribution, we combine the {it Fermi}-LAT data with Imaging Atmospheric Cerenkov Telescopes measurements of the most energetic sources. Our analysis is carried on separately for low- and intermediate-synchrotron-peaked BL Lacs on one hand, and high-synchrotron-peaked BL Lacs on the other one: we find in fact statistically different features for the two. The diffuse emission from the sum of both BL Lac classes increases from about 10$%$ of the measured IGRB at 100 MeV to $sim$100$%$ of the data level at 100 GeV. At energies greater than 100 GeV, our predictions naturally explain the IGRB data, accommodating their softening with increasing energy. Uncertainties are estimated to be within of a factor of two of the best-fit flux up to 500 GeV.
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. In blazars, the spectral energy distribution (SED) is dominated by the non-thermal emission of the relativistic jet, and consists of two main broad humps. For the EHBLs, these two components peak in the X-ray and GeV-TeV bands, respectively. Although the number of TeV detected extreme blazars is very limited, recent observations by Imaging Atmospheric Cherenkov Telescopes (IACTs) have revealed that in some of them the energy of the second peak exceeds several TeV (e.g. 1ES 0229+200). Their exceptional hard TeV spectra represent a challenge for the standard leptonic modeling, and a possible hadronic contribution may make these objects high-energy neutrinos producers. Moreover, they are important for the implications on the indirect measurements of the extragalactic background light and of the intergalactic magnetic field. In this contribution, we perform a comparative study of the multi-wavelength spectral energy distributions of a sample of hard X-ray selected EHBL objects. The analysis suggests that the EHBL class is not homogeneous, and a possible sub-classification may be unveiled with TeV gamma-ray observations of the candidates. With the purpose of increasing their number and settle their statistics, we discuss the potential detectability of the currently undetected TeV-emitting EHBLs in our sample by current and next generation of IACTs.
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emissi on in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modeling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multi-wavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible sub-classification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.
Context. It has become evident that one-zone synchrotron self-Compton models are not always adequate for very-high-energy (VHE) gamma-ray emitting blazars. While two-component models are performing better, they are difficult to constrain due to the l arge number of free parameters. Aims. In this work, we make a first attempt to take into account the observational constraints from Very Long Baseline Interferometry (VLBI) data, long-term light curves (radio, optical, and X-rays) and optical polarisation to limit the parameter space for a two-component model and test if it can still reproduce the observed spectral energy distribution (SED) of the blazars. Methods. We selected five TeV BL Lac objects based on the availability of VHE gamma-ray and optical polarisation data. We collected constraints for the jet parameters from VLBI observations. We evaluated the contributions of the two components to the optical flux by means of decomposition of long-term radio and optical light curves as well as modeling of the optical polarisation variability of the objects. We selected eight epochs for these five objects, based on the variability observed at VHE gamma rays, for which we constructed the SEDs that we then modeled with a two-component model. Results. We found parameter sets which can reproduce the broadband SED of the sources in the framework of two-component models considering all available observational constraints from VLBI observations. Moreover, the constraints obtained from the long-term behavior of the sources in the lower energy bands could be used to determine the region where the emission in each band originates. Finally, we attempted to use optical polarisation data to shed new light on the behavior of the two components in the optical band. Our observationally constrained two zone model allows explanation of the entire SED from radio to VHE with two co-located emission regions.
Context: We present the results of a set of observations of nine TeV detected BL Lac objects performed by the XRT and UVOT detectors on board the Swift satellite between March and December 2005. Aims: We are mainly interested in measuring the spectra l parameters, and particularly the intrinsic curvature in the X-ray band. Methods: We perform X-ray spectral analysis of observed BL Lac TeV objects using either a log-parabolic or a simple power-law model . Results: We found that many of the objects in our sample do show significant spectral curvature, whereas those having the peak of the spectral energies distribution at energies lower than ~0.1 keV show power law spectra. In these cases, however, the statistics are generally low thus preventing a good estimate of the curvature. Simultaneous UVOT observations are important to verify how X-ray spectra can be extrapolated at lower frequencies and to search for multiple emission components. Conclusions: The results of our analysis are useful for the study of possible signatures of statistical acceleration processes predicting intrinsically curved spectra and for modelling the SED of BL Lacertae objects up to TeV energies where a corresponding curvature is likely to be present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا