ترغب بنشر مسار تعليمي؟ اضغط هنا

Establishing a particle distribution for multi-wavelength emission from BL Lac objects

125   0   0.0 ( 0 )
 نشر من قبل Shi-Ju Kang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrons are accelerated at the shock wave diffuse and advect outward, and subsequently drift away into the emitting region of the jet that is located in the downstream flow from the plane shock. The current work considers the acceleration of the electrons in the shock front. Assuming a proper boundary condition at the interface between the shock and the downstream zones, a novel particle distribution in the downstream flow is proposed in this work to reproduce the broadband spectral energy distribution of BL Lac objects. We find that (1) we can obtain the particle distribution downstream of the shock wave in four cases; (2) electrons with higher energy ($gamma>gamma_{0}$) dominate the emission spectrum; (3) the distinctly important physical parameters assumed in our model can reasonably reproduce the multi-wavelength spectrum of the high-synchrotron-peaked BL Lac object Markarian 421 (Mrk 421).



قيم البحث

اقرأ أيضاً

Blazars represent the most abundant class of high-energy extragalactic $gamma$-ray sources. The subset of blazars known as BL Lac objects is on average closer to Earth and characterized by harder spectra at high energy than the whole sample. The frac tion of BL Lacs that is too dim to be detected and resolved by current $gamma$-ray telescopes is therefore expected to contribute to the high-energy isotropic diffuse $gamma$-ray background (IGRB). The IGRB has been recently measured over a wide energy range by the Large Area Telescope (LAT) on board the Gamma-ray Space Telescope ({it Fermi}). We present a new prediction of the diffuse $gamma$-ray flux due to the unresolved BL Lac blazar population. The model is built upon the spectral energy distribution and the luminosity function derived from the fraction of BL Lacs detected (and spectrally characterized) in the $gamma$-ray energy range. We focus our attention on the ${cal O}(100)$ GeV energy range, predicting the emission up to the TeV scale and taking into account the absorption on the extragalactic background light. In order to better shape the BL Lac spectral energy distribution, we combine the {it Fermi}-LAT data with Imaging Atmospheric Cerenkov Telescopes measurements of the most energetic sources. Our analysis is carried on separately for low- and intermediate-synchrotron-peaked BL Lacs on one hand, and high-synchrotron-peaked BL Lacs on the other one: we find in fact statistically different features for the two. The diffuse emission from the sum of both BL Lac classes increases from about 10$%$ of the measured IGRB at 100 MeV to $sim$100$%$ of the data level at 100 GeV. At energies greater than 100 GeV, our predictions naturally explain the IGRB data, accommodating their softening with increasing energy. Uncertainties are estimated to be within of a factor of two of the best-fit flux up to 500 GeV.
The wealth of recent data from imaging air Cherenkov telescopes (IACTs), ultra-high energy cosmic-ray experiments and neutrino telescopes have fuelled a renewed interest in hadronic emission models for gamma-loud blazars. We explore physically plausi ble solutions for a lepto-hadronic interpretation of the stationary emission from high-frequency peaked BL Lac objects (HBLs). The modelled spectral energy distributions are then searched for specific signatures at very high energies that could help to distinguish the hadronic origin of the emission from a standard leptonic scenario. By introducing a few basic constraints on parameters of the model, such as assuming the co-acceleration of electrons and protons, we significantly reduced the number of free parameters. We then systematically explored the parameter space of the size of the emission region and its magnetic field for two bright gamma-loud HBLs, PKS 2155-304 and Mrk 421. For all solutions close to equipartition between the energy densities of protons and of the magnetic field, and with acceptable jet power and light-crossing timescales, we inspected the spectral hardening in the multi-TeV domain from proton-photon induced cascades and muon-synchrotron emission inside the source. Very-high-energy spectra simulated with the available instrument functions from the future Cherenkov Telescope Array (CTA) were evaluated for detectable features as a function of exposure time, source redshift, and flux level. Over a large range of model parameters, the spectral hardening due to internal synchrotron-pair cascades, the cascade bump, should be detectable for acceptable exposure times with the future CTA for a few nearby and bright HBLs.
We present a new catalogue of the RATAN-600 multi-frequency measurements for BL Lac objects. The purpose of this catalogue is to compile the BL Lac multi-frequency data that is acquired with the RATAN-600 simultaneously at several frequencies. The BL Lac objects emit a strongly variable and polarized non-thermal radiation across the entire electromagnetic spectrum from radio to gamma-rays and represent about one percent of known AGNs. They belong to the blazar population and differ from other blazars featureless optical spectrum, which sometimes have absorption lines, or have weak and narrow emission lines. One of the most effective ways of studying the physics of BL Lacs is the use of simultaneous multi-frequency data. The multi-frequency broadband radio spectrum was obtained simultaneously with an accuracy of up to 1-2 minutes for four to six frequencies: 1.1, 2.3, 4.8, 7.7, 11.2, and 21.7 GHz. The catalogue is based on the RATAN-600 observations and on the data from: equatorial coordinate and redshift, R-band magnitude, synchrotron peak frequency, SED classes and object type, literature. The present version of the catalogue contains RATAN-600 flux densities measurements over nine years (2006-2014), radio spectra at different epochs, and their parameters for more than 300 BL Lacs objects and candidates. The BL Lacs list is constantly updated with new observational data of RATAN-600.
1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the or igin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006-10 with H.E.S.S. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1sigma. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Gamma = 3.08pm0.42_{stat}pm0.20_{sys}. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission is significant at 8.3sigma in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the ATOM telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F_{0.3-7 keV} = 1.04^{+0.04}_{-0.05} times 10^{-11} erg.cm^{-2}.s^{-1} in the 0.3-7 keV range. Finally, all the available data are used to study the sources multi-wavelength properties. The SED can be reproduced using a simple one-zone SSC model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type.
234 - M. Orr 2013
Here we present highlights from VERITAS observations of high-frequency-peaked BL Lac objects (HBLs). We discuss the key science motivations for observing these sources -- including performing multiwavelength campaigns critical to understanding the em ission mechanisms at work in HBLs, constraining the intensity and spectra shape of the extragalactic background light, and placing limits on the strength of the intergalactic magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا