ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for TeV Candidates in 4LAC High-synchrotron-peaked Frequency BL Lac Objects

151   0   0.0 ( 0 )
 نشر من قبل Shi-Ju Kang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The next generation of TeV detectors is expected to have a significantly enhanced performance. It is therefore constructive to search for new TeV candidates for observation. This paper focuses on TeV candidates among the high-synchrotron-peaked BL Lacertae objects (HBLs) reported in the fourth catalog of active galactic nuclei detected by the Fermis Large Area Telescope, i.e., 4LAC. By cross-matching the Fermi data with radio and optical observations, we collected the multiwavelength features of 180 HBLs with known redshift. The data set contains 39 confirmed TeV sources and 141 objects whose TeV detection has not yet been reported (either not yet observed, or observed but not detected). Using two kinds of supervised machine-learning (SML) methods, we searched for new possible TeV candidates (PTCs) among the nondetected objects by assessing the similarity of their multi-wavelength properties to existing TeV-detected objects. The classification results of the two SML classifiers were combined and the 24 highest-confidence PTCs were proposed as the best candidates. We calculate, here, the 12 year averaged Fermi spectra of these PTCs and estimate their detectability by extrapolating the Fermi spectrum and including the extragalactic background light attenuation. Four candidates are suggested to have a high likelihood of being detected by the Large High Altitude Air Shower Observatory and 24 are candidates for the Cerenkov Telescope Array observations.



قيم البحث

اقرأ أيضاً

241 - M. Orr 2013
Here we present highlights from VERITAS observations of high-frequency-peaked BL Lac objects (HBLs). We discuss the key science motivations for observing these sources -- including performing multiwavelength campaigns critical to understanding the em ission mechanisms at work in HBLs, constraining the intensity and spectra shape of the extragalactic background light, and placing limits on the strength of the intergalactic magnetic field.
141 - F. Massaro 2013
BL Lac objects are the most numerous class of extragalactic TeV-detected sources. One of the biggest difficulties in investigating their TeV emission resides in their limited number, since only 47 BL Lacs are known as TeV emitters. In this paper, we propose new criteria to select TeV BL Lac candidates based on the infrared (IR) and X-ray observations. We apply our selection criteria to the BL Lac objects listed in the ROMA-BZCAT catalog so identifying 41 potential TeV emitters. We then consider a search over a more extended sample combining the ROSAT bright source catalog and the WISE all-sky survey revealing 54 additional candidates for TeV observations. Our investigation also led to a tentative classification of 16 unidentified X-ray sources as BL Lac candidates. This analysis provides new interesting BL Lac targets for future observations with ground based Cherenkov telescopes.
We performed an observational program with the X-ray satellite BeppoSAX to study objects with extreme synchrotron peak frequencies (nu_peak > 1 keV). Of the seven sources observed, four showed peak frequencies in the range 1-5 keV, while one (1ES 142 6+428) displayed a flat power law spectrum (alpha= 0.92), locating its synchrotron peak at or above 100 keV. This is the third source of this type ever found, after Mkn 501 and 1ES 2344+514. Our data confirm the large nu_peak variability of this class of sources, compared with lower peaked objects. The high synchrotron peak energies, flagging the presence of high energy electrons, make the extreme BL Lacs also good candidates for TeV emission, and therefore good probes for the IR background.
BL Lac objects are known to have very energetic jets pointing towards the observer under small viewing angles. Many of these show high luminosity over the whole energy range up to TeV, mostly classified as high-energy peaked BL Lac objects. Recently, TeV gamma-ray emission was detected from a low-energy peaked BL Lac object. Interestingly, this source has also a clear detection of an X-ray jet. We present a detailed study of this X-ray jet and its connection to the radio jet as well as a study of the underlying physical processes in the energetic jet, producing emission from the radio to the TeV range.
Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. In blazars, the spectral energy distribution (SED) is dominated by the non-thermal emission of the relativistic jet, and consists of two main broad humps. For the EHBLs, these two components peak in the X-ray and GeV-TeV bands, respectively. Although the number of TeV detected extreme blazars is very limited, recent observations by Imaging Atmospheric Cherenkov Telescopes (IACTs) have revealed that in some of them the energy of the second peak exceeds several TeV (e.g. 1ES 0229+200). Their exceptional hard TeV spectra represent a challenge for the standard leptonic modeling, and a possible hadronic contribution may make these objects high-energy neutrinos producers. Moreover, they are important for the implications on the indirect measurements of the extragalactic background light and of the intergalactic magnetic field. In this contribution, we perform a comparative study of the multi-wavelength spectral energy distributions of a sample of hard X-ray selected EHBL objects. The analysis suggests that the EHBL class is not homogeneous, and a possible sub-classification may be unveiled with TeV gamma-ray observations of the candidates. With the purpose of increasing their number and settle their statistics, we discuss the potential detectability of the currently undetected TeV-emitting EHBLs in our sample by current and next generation of IACTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا