ﻻ يوجد ملخص باللغة العربية
We investigate the ergodicity and hot solvent/cold solute problems in molecular dynamics simulations. While the kinetic moments and the stimulated Nose--Hoover methods improve the ergodicity of a harmonic-oscillator system, both methods exhibit the hot solvent/cold solute problem in a binary liquid system. These results show that the devices to improve the ergodicity do not resolve the hot solvent/cold solute problem.
We present the complete set of stochastic Verlet-type algorithms that can provide correct statistical measures for both configurational and kinetic sampling in discrete-time Langevin systems. The approach is a brute-force general representation of th
In light of the recently developed complete GJ set of single random variable stochastic, discrete-time St{o}rmer-Verlet algorithms for statistically accurate simulations of Langevin equations, we investigate two outstanding questions: 1) Are there an
We solve the growing asymmetric Ising model [Phys. Rev. E 89, 012105 (2014)] in the topologies of deterministic and stochastic (random) scale-free trees predicting its non-monotonous behavior for external fields smaller than the coupling constant $J$
The dynamics of macroscopically homogeneous sheared suspensions of neutrally buoyant, non-Brownian spheres is investigated in the limit of vanishingly small Reynolds numbers using Stokesian dynamics. We show that the complex dynamics of sheared suspe
Both the deterministic and stochastic sandpile models are studied on the percolation backbone, a random fractal, generated on a square lattice in $2$-dimensions. In spite of the underline random structure of the backbone, the deterministic Bak Tang W