ترغب بنشر مسار تعليمي؟ اضغط هنا

Growing spin model in deterministic and stochastic trees

111   0   0.0 ( 0 )
 نشر من قبل Julian Sienkiewicz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve the growing asymmetric Ising model [Phys. Rev. E 89, 012105 (2014)] in the topologies of deterministic and stochastic (random) scale-free trees predicting its non-monotonous behavior for external fields smaller than the coupling constant $J$. In both cases we indicate that the crossover temperature corresponding to maximal magnetization decays approximately as $(ln ln N)^{-1}$, where $N$ is the number of nodes in the tree.



قيم البحث

اقرأ أيضاً

One can often make inferences about a growing network from its current state alone. For example, it is generally possible to determine how a network changed over time or pick among plausible mechanisms explaining its growth. In practice, however, the extent to which such problems can be solved is limited by existing techniques, which are often inexact, inefficient, or both. In this article we derive exact and efficient inference methods for growing trees and demonstrate them in a series of applications: network interpolation, history reconstruction, model fitting, and model selection.
Motivated by recent experiments with two-component Bose-Einstein condensates, we study fully-connected spin models subject to an additional constraint. The constraint is responsible for the Hilbert space dimension to scale only linearly with the syst em size. We discuss the unconventional statistical physical and thermodynamic properties of such a system, in particular the absence of concentration of the underlying probability distributions. As a consequence, expectation values are less suitable to characterize such systems, and full distribution functions are required instead. Sharp signatures of phase transitions do not occur in such a setting, but transitions from singly peaked to doubly peaked distribution functions of an order parameter may be present.
We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic external field and the stochastic mutually correlated noises simultaneously. A time-depe ndent Ginzburg-Landau stochastic differential equation, including an oscillating modulation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the relevant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the stochastic resonance in trend, in the kinetic ISS, and the reentrant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation lmda between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. A brief discussion was given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises. Keywords: Ising spin system, nonequilibrium dynamical phase transition, stochastic resonance, correlated noises, TDGL model. PACS: 75.10.Hk, 64.60.Ht, 05.10.Gg, 76.20.+q
139 - G. Drazer , J. Koplik , B. Khusid 2001
The dynamics of macroscopically homogeneous sheared suspensions of neutrally buoyant, non-Brownian spheres is investigated in the limit of vanishingly small Reynolds numbers using Stokesian dynamics. We show that the complex dynamics of sheared suspe nsions can be characterized as a chaotic motion in phase space and determine the dependence of the largest Lyapunov exponent on the volume fraction $phi$. The loss of memory at the microscopic level of individual particles is also shown in terms of the autocorrelation functions for the two transverse velocity components. Moreover, a negative correlation in the transverse particle velocities is seen to exist at the lower concentrations, an effect which we explain on the basis of the dynamics of two isolated spheres undergoing simple shear. In addition, we calculate the probability distribution function of the velocity fluctuations and observe, with increasing $phi$, a transition from exponential to Gaussian distributions. The simulations include a non-hydrodynamic repulsive interaction between the spheres which qualitatively models the effects of surface roughness and other irreversible effects, such as residual Brownian displacements, that become particularly important whenever pairs of spheres are nearly touching. We investigate the effects of such a non-hydrodynamic interparticle force on the scaling of the particle tracer diffusion coefficient $D$ for very dilute suspensions, and show that, when this force is very short-ranged, $D$ becomes proportional to $phi^2$ as $phi to 0$. In contrast, when the range of the non-hydrodynamic interaction is increased, we observe a crossover in the dependence of $D$ on $phi$, from $phi^2$ to $phi$ as $phi to 0$.
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighb ors at rate one. At the same rate, a spreader becomes a stifler after a contact with other nearest neighbor spreaders, or stiflers. In this work we study the model on random trees. As usual we define a critical parameter of the model as the critical value around which the rumor either becomes extinct almost-surely or survives with positive probability. We analyze the existence of phase-transition regarding the survival of the rumor, and we obtain estimates for the mean range of the rumor. The applicability of our results is illustrated with examples on random trees generated from some well-known discrete distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا