ﻻ يوجد ملخص باللغة العربية
Both the deterministic and stochastic sandpile models are studied on the percolation backbone, a random fractal, generated on a square lattice in $2$-dimensions. In spite of the underline random structure of the backbone, the deterministic Bak Tang Wiesenfeld (BTW) model preserves its positive time auto-correlation and multifractal behaviour due to its complete toppling balance, whereas the critical properties of the stochastic sandpile model (SSM) still exhibits finite size scaling (FSS) as it exhibits on the regular lattices. Analysing the topography of the avalanches, various scaling relations are developed. While for the SSM, the extended set of critical exponents obtained is found to obey various the scaling relation in terms of the fractal dimension $d_f^B$ of the backbone, whereas the deterministic BTW model, on the other hand, does not. As the critical exponents of the SSM defined on the backbone are related to $d_f^B$, the backbone fractal dimension, they are found to be entirely different from those of the SSM defined on the regular lattice as well as on other deterministic fractals. The SSM on the percolation backbone is found to obey FSS but belongs to a new stochastic universality class.
We study the steady state of the abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their abelian algebra to determine the
This paper is devoted to the recent advances in self-organized criticality (SOC), and the concepts. The paper contains three parts; in the first part we present some examples of SOC systems, in the second part we add some comments concerning its rela
We revisit the question whether the critical behavior of sandpile models with sticky grains is in the directed percolation universality class. Our earlier theoretical arguments in favor, supported by evidence from numerical simulations [ Phys. Rev. L
A dissipative sandpile model (DSM) is constructed and studied on small world networks (SWN). SWNs are generated adding extra links between two arbitrary sites of a two dimensional square lattice with different shortcut densities $phi$. Three differen
A dissipative stochastic sandpile model is constructed and studied on small world networks in one and two dimensions with different shortcut densities $phi$, where $phi=0$ represents regular lattice and $phi=1$ represents random network. The effect o