ﻻ يوجد ملخص باللغة العربية
The dynamics of macroscopically homogeneous sheared suspensions of neutrally buoyant, non-Brownian spheres is investigated in the limit of vanishingly small Reynolds numbers using Stokesian dynamics. We show that the complex dynamics of sheared suspensions can be characterized as a chaotic motion in phase space and determine the dependence of the largest Lyapunov exponent on the volume fraction $phi$. The loss of memory at the microscopic level of individual particles is also shown in terms of the autocorrelation functions for the two transverse velocity components. Moreover, a negative correlation in the transverse particle velocities is seen to exist at the lower concentrations, an effect which we explain on the basis of the dynamics of two isolated spheres undergoing simple shear. In addition, we calculate the probability distribution function of the velocity fluctuations and observe, with increasing $phi$, a transition from exponential to Gaussian distributions. The simulations include a non-hydrodynamic repulsive interaction between the spheres which qualitatively models the effects of surface roughness and other irreversible effects, such as residual Brownian displacements, that become particularly important whenever pairs of spheres are nearly touching. We investigate the effects of such a non-hydrodynamic interparticle force on the scaling of the particle tracer diffusion coefficient $D$ for very dilute suspensions, and show that, when this force is very short-ranged, $D$ becomes proportional to $phi^2$ as $phi to 0$. In contrast, when the range of the non-hydrodynamic interaction is increased, we observe a crossover in the dependence of $D$ on $phi$, from $phi^2$ to $phi$ as $phi to 0$.
Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform perio
We present results from a series of experiments on a granular medium sheared in a Couette geometry and show that their statistical properties can be computed in a quantitative way from the assumption that the resultant from the set of forces acting i
We propose a new look at the heat bath for two Brownian particles, in which the heat bath as a `system is both perturbed and sensed by the Brownian particles. Non-local thermal fluctuation give rise to bath-mediated static forces between the particle
Large scale simulations and analytical theory have been combined to obtain the non-equilibrium velocity distribution, $f(v)$, of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalised to incl
Non-Newtonian transport properties of an inertial suspension of inelastic rough hard spheres under simple shear flow are determined from the Boltzmann kinetic equation. The influence of the interstitial gas on rough hard spheres is modeled via a Fokk