ﻻ يوجد ملخص باللغة العربية
If spin liquids have been famously defined by what they are not, i.e. ordered, the past years have seen the frontier between order and spin liquid starting to fade, with a growing number of materials whose low-temperature physics cannot be explained without co-existence of (partial) magnetic order and spin fluctuations. Here we study an example of such co-existence in the presence of magnetic dipolar interactions, related to spin ice, where the order is long range and the fluctuations support a Coulomb gauge field. Topological defects are effectively coupled via energetic and entropic Coulomb interactions, the latter one being stronger than for the spin-ice ground state. Depending on whether these defects break the divergence-free condition of the Coulomb gauge field or the long-range order, they are respectively categorized as monopoles - as in spin ice - or monopole holes, in analogy with electron holes in semiconductors. The long-range order plays the role of a fully-occupied valence band, while the Coulomb spin liquid can be seen as an empty conducting band. These results are discussed in the context of other lattices and models which support a similar co-existence of Coulomb gauge field and long-range order. We conclude this work by explaining how dipolar interactions lift the spin liquid degeneracy at very low energy scale by maximizing the number of flippable plaquettes, in light of the equivalent quantum dimer model.
Quantum spin liquids host novel emergent excitations, such as monopoles of an emergent gauge field. Here, we study the hierarchy of monopole operators that emerges at quantum critical points (QCPs) between a two-dimensional Dirac spin liquid and vari
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements o
The ground-state ordering and dynamics of the two-dimensional (2D) S=1/2 frustrated Heisenberg antiferromagnet Cs_2CuCl_4 is explored using neutron scattering in high magnetic fields. We find that the dynamic correlations show a highly dispersive con
We present a study of a simple model antiferromagnet consisting of a sum of nearest neighbor SO($N$) singlet projectors on the Kagome lattice. Our model shares some features with the popular $S=1/2$ Kagome antiferromagnet but is specifically designed
The two-electron doped rare earth mangnites Ca_1-x Ce_x MnO_3 (x = 0.1,0.2) are probed using resistivity, ac susceptibility and electron paramagnetic resonance (EPR) measurements across their respective charge ordering (CO) temperatures T_CO = 173 K