ﻻ يوجد ملخص باللغة العربية
Quantum spin liquids host novel emergent excitations, such as monopoles of an emergent gauge field. Here, we study the hierarchy of monopole operators that emerges at quantum critical points (QCPs) between a two-dimensional Dirac spin liquid and various ordered phases. This is described by a confinement transition of quantum electrodynamics in two spatial dimensions (QED3 Gross-Neveu theories). Focusing on a spin ordering transition, we get the scaling dimension of monopoles at leading order in a large-N expansion, where 2N is the number of Dirac fermions, as a function of the monopoles total magnetic spin. Monopoles with a maximal spin have the smallest scaling dimension while monopoles with a vanishing magnetic spin have the largest one, the same as in pure QED3. The organization of monopoles in multiplets of the QCPs symmetry group SU(2) x SU(N) is shown for general N.
Monopole operators are studied at certain quantum critical points between a Dirac spin liquid and topological quantum spin liquids (QSLs): chiral and Z$_{2}$ QSLs. These quantum phase transitions are described by conformal field theories (CFTs): quan
If spin liquids have been famously defined by what they are not, i.e. ordered, the past years have seen the frontier between order and spin liquid starting to fade, with a growing number of materials whose low-temperature physics cannot be explained
The spin-1/2 triangular lattice antiferromagnet YbMgGaO$_{4}$ has attracted recent attention as a quantum spin-liquid candidate with the possible presence of off-diagonal anisotropic exchange interactions induced by spin-orbit coupling. Whether a qua
A key problem in the field of quantum criticality is to understand the nature of quantum phase transitions in systems of interacting itinerant fermions, motivated by experiments on a variety of strongly correlated materials. Much attention has been p
At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. While such states are possibly reali