ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a Gapped Spin-Liquid Ground State in a Kagome Heisenberg Antiferromagnet

156   0   0.0 ( 0 )
 نشر من قبل Takashi Imai
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements of the S=1/2 kagome lattice in herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrate that the intrinsic local spin susceptibility $chi_{kagome}$ deduced from the 17-O NMR frequency shift asymptotes to zero below temperature T ~ 0.03 J, where J ~ 200 K is the Cu-Cu super-exchange interaction. Combined with the magnetic field dependence of $chi_{kagome}$ we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.



قيم البحث

اقرأ أيضاً

165 - Jiabin Liu , Long Yuan , Xuan Li 2021
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magn etic defects always dominate the low-energy spectrum and hinder the detection of the intrinsic nature. We demonstrate that the new single crystal of YCu$_3$[OH(D)]$_{6.5}$Br$_{2.5}$ is a perfect KHA without evident magnetic defects ($ll$ 0.8%). Through fitting the magnetic susceptibilities of the orientated single crystals, we find the spin system with weak anisotropic interactions and with first-, second-, and third-neighbor couplings, $J_1$ $sim$ 56 K and $J_2$ $sim$ $J_3$ $sim$ 0.1$J_1$, belongs to the continuous family of fully frustrated KHAs. No conventional freezing is observed down to 0.36 K $sim$ 0.006$J_1$, and the raw specific heat exhibits a nearly quadratic temperature dependence below 1 K $sim$ 0.02$J_1$, well consistent with a gapless (spin gap $leq$ 0.025$J_1$) Dirac QSL.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing le-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
We investigate the spin-1/2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e. with weak and strong triangular units), constructing an improved simplex Resonating Valence Bond (RVB) ansatz by successive applications (up to three times) of local quantum gates which implement a filtering operation on the bare nearest-neighbor RVB state. The resulting Projected Entangled Pair State involves a small number of variational parameters (only one at each level of application) and preserves full lattice and spin-rotation symmetries. Despite its simple analytic form, the simplex RVB provides very good variational energies at strong and even intermediate breathing anisotropy. We show that it carries $Z_2$ topological order which does not fade away under the first few applications of the quantum gates, suggesting that the RVB topological spin liquid becomes a competing ground state candidate for the kagome antiferromagnet at large breathing anisotropy.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success ful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence of any magnetic ordering down to 20 mK (sim J/10^4). We investigate in detail the spin dynamics on well characterized samples in zero and applied longitudinal fields and propose a low T defect based interpretation to explain the unconventional dynamics observed in the quantum spin liquid phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا