ترغب بنشر مسار تعليمي؟ اضغط هنا

Nernst effect in metals and superconductors: a review of concepts and experiments

60   0   0.0 ( 0 )
 نشر من قبل Kamran Behnia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Nernst effect is the transverse electric field produced by a longitudinal thermal gradient in presence of magnetic field. In the beginning of this century, Nernst experiments on cuprates were analyzed assuming that: i) The contribution of quasi-particles to the Nernst signal is negligible; and ii) Gaussian superconducting fluctuations cannot produce a Nernst signal well above the critical temperature. Both these assumptions were contradicted by subsequent experiments. This paper reviews experiments documenting multiple sources of a Nernst signal, which, according to the Brigman relation, measures the flow of transverse entropy caused by a longitudinal particle flow. Along the lines of Landauers approach to transport phenomena, the magnitude of the transverse magneto-thermoelectric response is linked to the quantum of thermoelectric conductance and a number of material-dependent length scales: the mean-free-path, the Fermi wavelength, the de Broglie thermal wavelength and the superconducting coherence length. Extremely mobile quasi-particles in dilute metals generate a widely-documented Nernst signal. Fluctuating Cooper pairs in the normal state of superconductors have been found to produce a detectable Nernst signal with an amplitude conform to the Gaussian theory, first conceived by Ussishkin, Sondhi and Huse. In addition to these microscopic sources, mobile Abrikosov vortices, mesoscopic objects carrying simultaneously entropy and magnetic flux, can produce a sizeable Nernst response. Finally, in metals subject to a magnetic field strong enough to truncate the Fermi surface to a few Landau tubes, each exiting tube generates a peak in the Nernst response. The survey of these well-established sources of the Nernst signal is a helpful guide to identify the origin of the Nernst signal in other controversial cases.

قيم البحث

اقرأ أيضاً

Motivated by the recent experiments on the kagome metals $Atext{V}_3text{Sb}_5$ with $A=text{K}, text{Rb}, text{Cs}$, which see onset of charge density wave (CDW) order at $sim$ $100$ K and superconductivity at $sim$ $1$ K, we explore the onset of su perconductivity, taking the perspective that it descends from a parent CDW state. In particular, we propose that the pairing comes from the Pomeranchuk fluctuations of the reconstructed Fermi surface in the CDW phase. This scenario naturally explains the large separation of energy scale from the parent CDW. Remarkably, the phase diagram hosts the double-dome superconductivity near two reconstructed Van Hove singularities. These singularities occur at the Lifshitz transition and the quantum critical point of the parent CDW. The first dome is occupied by the $d_{xy}$-wave nematic spin-singlet superconductivity. Meanwhile, the $(s+d_{x^2-y^2})$-wave nematic spin-singlet superconductivity develops in the second dome. Our work sheds light on an unconventional pairing mechanism with strong evidences in the kagome metals $Atext{V}_3text{Sb}_5$.
Analogous to the Hall effect, the Nernst effect is the generation of a transverse voltage due to a temperature gradient in the presence of a perpendicular magnetic field. The Nernst effect has promise for thermoelectric applications and as a probe of electronic structure. In magnetic materials, a so-called anomalous Nernst effect (ANE) is possible in zero magnetic field. Here we report a colossal ANE reaching 23 $mu$V/K in the ferromagnetic metal UCo$_{0.8}$Ru$_{0.2}$Al. Uraniums $5f$ electrons provide strong electronic correlations that lead to narrow bands, which are a known route to producing a large thermoelectric response. Additionally, the large nuclear charge of uranium generates strong spin-orbit coupling, which produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that at least 148 Weyl nodes and two nodal lines exist within $pm$ 60 meV of the Fermi level in UCo$_{0.8}$Ru$_{0.2}$Al. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.
The proximity effect at the interface between a topological insulator (TI) and a superconductor is predicted to give rise to chiral topological superconductivity and Majorana fermion excitations. In most TIs studied to date, however, the conducting b ulk states have overwhelmed the transport properties and precluded the investigation of the interplay of the topological surface state and Cooper pairs. Here, we demonstrate the superconducting proximity effect in the surface state of SmB6 thin films which display bulk insulation at low temperatures. The Fermi velocity in the surface state deduced from the proximity effect is found to be as large as 10^5 m/s, in good agreement with the value obtained from a separate transport measurement. We show that high transparency between the TI and a superconductor is crucial for the proximity effect. The finding here opens the door to investigation of exotic quantum phenomena using all-thin-film multilayers with high-transparency interfaces.
143 - Yongkang Luo , H. Li , Y. M. Dai 2015
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
Raman scattering experiments on LaFeAsO with splitted antiferromagnetic (T_AFM = 140 K) and tetragonal-orthorhombic (T_S = 155 K) transitions show a quasi-elastic peak (QEP) in B2g symmetry (2 Fe tetragonal cell) that fades away below ~T_AFM and is a scribed to electronic nematic fluctuations. A scaling of the reported shear modulus with the T-dependence of the QEP height rather than the QEP area indicates that magnetic degrees of freedom drive the structural transition. The large separation between T_S and T_AFM in LaFeAsO compared with their coincidence in BaFe2As2 manifests itself in slower dynamics of nematic fluctuations in the former.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا