ﻻ يوجد ملخص باللغة العربية
Analogous to the Hall effect, the Nernst effect is the generation of a transverse voltage due to a temperature gradient in the presence of a perpendicular magnetic field. The Nernst effect has promise for thermoelectric applications and as a probe of electronic structure. In magnetic materials, a so-called anomalous Nernst effect (ANE) is possible in zero magnetic field. Here we report a colossal ANE reaching 23 $mu$V/K in the ferromagnetic metal UCo$_{0.8}$Ru$_{0.2}$Al. Uraniums $5f$ electrons provide strong electronic correlations that lead to narrow bands, which are a known route to producing a large thermoelectric response. Additionally, the large nuclear charge of uranium generates strong spin-orbit coupling, which produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that at least 148 Weyl nodes and two nodal lines exist within $pm$ 60 meV of the Fermi level in UCo$_{0.8}$Ru$_{0.2}$Al. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.
We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $sigma_{xz}^{int} sim$ 32 $Omega^{-1}cm^{-1}$ and $sigma_{xy}^
We report a detailed investigation of the Ni$_{2}$MnGa shape memory alloy through magnetic, electronic, and thermal measurements. Our measurements of the anomalous Nernst effect (ANE) reveal that this technique is very sensitive to the onset of the p
The field of topological electronic materials has seen rapid growth in recent years, in particular with the increasing number of weakly interacting systems predicted and observed to host topologically non-trivial bands. Given the broad appearance of
We report magnetic and electrical properties for single crystals of NdMn$_6$Sn$_6$ and SmMn$_6$Sn$_6$. They crystallize into a structure which has distorted, Mn-based kagome lattices, compared to the pristine kagome lattices in heavy-rare-earth-beari
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berr