ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the superconducting proximity effect in the surface state of SmB6 thin films

129   0   0.0 ( 0 )
 نشر من قبل Seunghun Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The proximity effect at the interface between a topological insulator (TI) and a superconductor is predicted to give rise to chiral topological superconductivity and Majorana fermion excitations. In most TIs studied to date, however, the conducting bulk states have overwhelmed the transport properties and precluded the investigation of the interplay of the topological surface state and Cooper pairs. Here, we demonstrate the superconducting proximity effect in the surface state of SmB6 thin films which display bulk insulation at low temperatures. The Fermi velocity in the surface state deduced from the proximity effect is found to be as large as 10^5 m/s, in good agreement with the value obtained from a separate transport measurement. We show that high transparency between the TI and a superconductor is crucial for the proximity effect. The finding here opens the door to investigation of exotic quantum phenomena using all-thin-film multilayers with high-transparency interfaces.



قيم البحث

اقرأ أيضاً

81 - Q. Y. Chen , D. F. Xu , X. H. Niu 2016
Heavy fermion materials gain high electronic masses and expand Fermi surfaces when the high-temperature localized f electrons become itinerant and hybridize with the conduction band at low temperatures. However, despite the common application of this model, direct microscopic verification remains lacking. Here we report high-resolution angle-resolved photoemission spectroscopy measurements on CeCoIn5, a prototypical heavy fermion compound, and reveal the long-sought band hybridization and Fermi surface expansion. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized at the lowest temperature. Moreover, crystal field excitations likely play an important role in the anomalous temperature dependence. Our results paint an comprehensive unanticipated experimental picture of the heavy fermion formation in a periodic multi-level Anderson/Kondo lattice, and set the stage for understanding the emergent properties in related materials.
82 - S. Y. Tan , C. H. P. Wen , M. Xia 2017
Hexagonal FeSe thin films were grown on SrTiO3 substrates and the temperature and thickness dependence of their electronic structures were studied. The hexagonal FeSe is found to be metallic and electron doped, whose Fermi surface consists of six ell iptical electron pockets. With decreased temperature, parts of the bands shift downward to high binding energy while some bands shift upwards to EF. The shifts of these bands begin around 300 K and saturate at low temperature, indicating a magnetic phase transition temperature of about 300 K. With increased film thickness, the Fermi surface topology and band structure show no obvious change except some minor quantum size effect. Our paper reports the first electronic structure of hexagonal FeSe, and shows that the possible magnetic transition is driven by large scale electronic structure reconstruction.
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a Topological Kondo insulator, in which a Kondo gap is developed and topologically protected surface conduction dominates low-temperature transport. Exploiting its non-linear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small DC current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, hasnt been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface state temperature in SmB6 with a RuO micro-thermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6oscillators at higher frequencies.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su ppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
SmB6 has been predicted and verified as a prototype of topological Kondo insulators (TKIs). Here we report longitudinal magnetoresistance and Hall coefficient measurements on co-sputtered nanocrystalline SmB6 films and try to find possible signatures of their topological properties. The magnetoresistance (MR) at 2 K is positive and linear (LPMR) at low field and becomes negative and quadratic at higher field. While the negative part is known from the reduction of the hybridization gap due to Zeeman splitting, the positive dependence is similar to what has been observed in other topological insulators (TI). We conclude that the LPMR is a characteristic feature of TI and is related to the linear dispersion near the Dirac cone. The Hall resistance shows a sign change around 50 K. It peaks and becomes nonlinear at around 10 K then decreases below 10 K. This indicates that carriers with opposite signs emerge below 50 K. Two films with different geometries (thickness and lateral dimension) show contrasting behavior below and above 50K, which proves the surface origin of the low temperature carriers in these films. The temperature dependence of magnetoresistance and the Hall data indicates that the surface states are likely non-trivial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا