ﻻ يوجد ملخص باللغة العربية
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
Extremely large magnetoresistance (XMR) was recently discovered in many non-magnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here, we report an investigation of t
The non-centrosymmetric Weyl semimetal candidate, MoTe$_2$ was investigated through neutron diffraction and transport measurements at pressures up to 1.5 GPa and at temperatures down to 40 mK. Centrosymmetric and non-centrosymmetric structural phases
Excitonic insulator (EI) is an intriguing insulating phase of matter, where electrons and holes are bonded into pairs, so called excitons, and form a phase-coherent state via Bose-Einstein Condensation (BEC). Its theoretical concept has been proposed
Ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large magnetoresistance material WTe$_{2}$. Our experiments reveal a fast relaxation process occurring on a sub-picosecond time scale that is caused by electron-phonon
A number of rare-earth monopnictides have topologically non-trivial band structures together with magnetism and strong electronic correlations. In order to examine whether the antiferromagnetic (AFM) semimetal YbAs ($Trm_N$ = 0.5 K) exhibits such a s