ﻻ يوجد ملخص باللغة العربية
By an inductive reasoning, and based on recent results of the joint moments of proper delay times of open chaotic systems for ideal coupling to leads, we obtain a general expression for the distribution of the partial delay times for an arbitrary number of channels and any symmetry. This distribution was not completely known for all symmetry classes. Our theoretical distribution is verified by random matrix theory simulations of ballistic chaotic cavities.
We calculate the density P(tau) of the eigenvalues of the Wigner-Smith time delay matrix for two-dimensional rectangular and circular billiards with one opening. For long times, the density of these so-called proper delay times decays algebraically,
Semiclassical methods can now explain many mesoscopic effects (shot-noise, conductance fluctuations, etc) in clean chaotic systems, such as chaotic quantum dots. In the deep classical limit (wavelength much less than system size) the Ehrenfest time (
The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos,
This article reports on a joint theoretical and experimental study of the Pauli quantum-mechanical stress tensor $T_{alpha beta}(x,y)$ for open two-dimensional chaotic billiards. In the case of a finite current flow through the system the interior wa
We report on transport characteristics of quantum dot devices etched entirely in graphene. At large sizes, they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nm, the