ﻻ يوجد ملخص باللغة العربية
The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos, which are the analogy to strong and weak instability of periodic orbits in a delay system. We find significant differences between scaling of exponents in periodic or chaotic systems. We show that chaotic scaling is related to fluctuations in the linearized equations of motion. A linear delay system including multiplicative noise shows the same properties as the deterministic chaotic systems.
Many-site Bose-Hubbard lattices display complex semiclassical dynamics, with both chaotic and regular features. We have characterised chaos in the semiclassical dynamics of short Bose-Hubbard chains using both stroboscopic phase space projections and
We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin chains in their quantum chaotic and many-body localized phases (MBL). The spectral statistics are characterized by the traces of powers $t$ of the Fl
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
Lagrangian techniques, such as the finite-time Lyapunov exponent (FTLE) and hyperbolic Lagrangian coherent structures (LCS), have become popular tools for analyzing unsteady fluid flows. These techniques identify regions where particles transported b