ترغب بنشر مسار تعليمي؟ اضغط هنا

Shot-noise of quantum chaotic systems in the classical limit

264   0   0.0 ( 0 )
 نشر من قبل Robert Whitney S.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert S. Whitney




اسأل ChatGPT حول البحث

Semiclassical methods can now explain many mesoscopic effects (shot-noise, conductance fluctuations, etc) in clean chaotic systems, such as chaotic quantum dots. In the deep classical limit (wavelength much less than system size) the Ehrenfest time (the time for a wavepacket to spread to a classical size) plays a crucial role, and random matrix theory (RMT) ceases to apply to the transport properties of open chaotic systems. Here we summarize some of our recent results for shot-noise (intrinsically quantum noise in the current through the system) in this deep classical limit. For systems with perfect coupling to the leads, we use a phase-space basis on the leads to show that the transmission eigenvalues are all 0 or 1 -- so transmission is noiseless [Whitney-Jacquod, Phys. Rev. Lett. 94, 116801 (2005), Jacquod-Whitney, Phys. Rev. B 73, 195115 (2006)]. For systems with tunnel-barriers on the leads we use trajectory-based semiclassics to extract universal (but non-RMT) shot-noise results for the classical regime [Whitney, Phys. Rev. B 75, 235404 (2007)].



قيم البحث

اقرأ أيضاً

We study the quantum to classical transition in a chaotic system surrounded by a diffusive environment. The emergence of classicality is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with $hbar^2_{rm eff}/D$, where $hbar_{rm eff}$ is the effective Planck constant and $D$ is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum to classical transition when it is measured comparing the corresponding phase space distributions. We discuss here the meaning of both scalings in the precise definition of a frontier between the classical and quantum behavior. We also show that there are quantum coherences that the Renyi entropy is unable to detect which questions its use in the studies of decoherence.
The work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection with fluctuations theorems. Here we develop a semiclassical approximation to the work distribution for a quench process in chaotic systems. The approach is based on the dephasing representation of the quantum Loschmidt echo and on the quantum ergodic conjecture, which states that the Wigner function of a typical eigenstate of a classically chaotic Hamiltonian is equidistributed on the energy shell. We show that our semiclassical approximation is accurate in describing the quantum distribution as we increase the temperature. Moreover, we also show that this semiclassical approximation provides a link between the quantum and classical work distributions.
We consider universal shot noise in ballistic chaotic cavities from a semiclassical point of view and show that it is due to action correlations within certain groups of classical trajectories. Using quantum graphs as a model system we sum these traj ectories analytically and find agreement with random-matrix theory. Unlike all action correlations which have been considered before, the correlations relevant for shot noise involve four trajectories and do not depend on the presence of any symmetry.
We present a new scheme to detect the quantum shot noise in coupled mesoscopic systems. By applying the noise thermometry to the capacitively coupled quantum point contacts (QPCs) we prove that the noise temperature of one QPC is in perfect proportio n to that of the other QPC which is driven to non-equilibrium to generate quantum shot noise. We also found an unexpected effect that the noise in the source QPC is remarkably suppressed possibly due to the cooling effect by the detector QPC.
We present a trajectory-based semiclassical calculation of the full counting statistics of quantum transport through chaotic cavities, in the regime of many open channels. Our method to obtain the $m$th moment of the density of transmission eigenvalu es requires two correlated sets of $m$ classical trajectories, therefore generalizing previous works on conductance and shot noise. The semiclassical results agree, for all values of $m$, with the corresponding predictions from random matrix theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا