ﻻ يوجد ملخص باللغة العربية
We report on transport characteristics of quantum dot devices etched entirely in graphene. At large sizes, they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nm, the peaks become strongly non-periodic indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino (Dirac) billiards. Short constrictions of only a few nm in width remain conductive and reveal a confinement gap of up to 0.5eV, which demonstrates the in-principle possibility of molecular-scale electronics based on graphene.
We present realistic simulations of quantum confinement effects in ballistic graphene quantum dots with linear dimensions of 10 to 40 nm. We determine wavefunctions and energy level statistics in the presence of disorder resulting from edge roughness
Electrostatic confinement of charge carriers in graphene is governed by Klein tunneling, a relativistic quantum process in which particle-hole transmutation leads to unusual anisotropic transmission at pn junction boundaries. Reflection and transmiss
The dynamics of low energy charge carriers in a graphene quantum dot subjected to a time-dependent local field is investigated numerically. In particular, we study a configuration where a Coulomb electric field is provided by an ion traversing the gr
We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field
We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions.