ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized tomographic maps and star-product formalism

220   0   0.0 ( 0 )
 نشر من قبل Paolo Facchi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We elaborate on the notion of generalized tomograms, both in the classical and quantum domains. We construct a scheme of star-products of thick tomographic symbols and obtain in explicit form the kernels of classical and quantum generalized tomograms. Some of the new tomograms may have interesting applications in quantum optical tomography.



قيم البحث

اقرأ أيضاً

161 - M. Asorey , P. Facchi , V.I. Manko 2012
Some non-linear generalizations of classical Radon tomography were recently introduced by M. Asorey et al [Phys. Rev. A 77, 042115 (2008), where the straight lines of the standard Radon map are replaced by quadratic curves (ellipses, hyperbolas, circ les) or quadratic surfaces (ellipsoids, hyperboloids, spheres). We consider here the quantum version of this novel non-linear approach and obtain, by systematic use of the Weyl map, a tomographic encoding approach to quantum states. Non-linear quantum tomograms admit a simple formulation within the framework of the star-product quantization scheme and the reconstruction formulae of the density operators are explicitly given in a closed form, with an explicit construction of quantizers and dequantizers. The role of symmetry groups behind the generalized tomographic maps is analyzed in some detail. We also introduce new generalizations of the standard singular dequantizers of the symplectic tomographic schemes, where the Dirac delta-distributions of operator-valued arguments are replaced by smooth window functions, giving rise to the new concept of thick quantum tomography. Applications for quantum state measurements of photons and matter waves are discussed.
We study the quantum evolution under the combined action of the exponentials of two not necessarily commuting operators. We consider the limit in which the two evolutions alternate at infinite frequency. This case appears in a plethora of situations, both in physics (Feynman integral) and mathematics (product formulas). We focus on the case in which the two evolution times are scaled differently in the limit and generalize standard techniques and results.
The quantizer-dequantizer formalism is developed for mean value and probability representation of qubits and qutrits. We derive the star-product kernels providing the possibility to derive explicit expressions of the associative product of the symbol s of the density operators and quantum observables for qubits. We discuss an extension of the quantizer-dequantizer formalism associated with the probability and observable mean-value descriptions of quantum states for qudits.
We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermioni c Quantum Cellular Automata (QCA) can be represented as fermionic MPUs. We then introduce a natural generalization of the latter, obtained by allowing for an additional operator acting on their auxiliary space. We characterize a family of such generalized MPUs that are locality-preserving, and show that, up to appending inert ancillary fermionic degrees of freedom, any representative of this family is a fermionic QCA and viceversa. Finally, we prove an index theorem for generalized MPUs, recovering the recently derived classification of fermionic QCA in one dimension. As a technical tool for our analysis, we also introduce a graded canonical form for fermionic matrix product states, proving its uniqueness up to similarity transformations.
We consider the noncommutative space-times with Lie-algebraic noncommutativity (e.g. $kappa$-deformed Minkowski space). In the framework with classical fields we extend the $star$-product in order to represent the noncommutative translations in terms of commutative ones. We show the translational invariance of noncommutative bilinear action with local product of noncommutative fields. The quadratic noncommutativity is also briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا