ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Product Formulas and Quantum Control

79   0   0.0 ( 0 )
 نشر من قبل Paolo Facchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the quantum evolution under the combined action of the exponentials of two not necessarily commuting operators. We consider the limit in which the two evolutions alternate at infinite frequency. This case appears in a plethora of situations, both in physics (Feynman integral) and mathematics (product formulas). We focus on the case in which the two evolution times are scaled differently in the limit and generalize standard techniques and results.



قيم البحث

اقرأ أيضاً

220 - M. Asorey , P. Facchi , V.I. Manko 2015
We elaborate on the notion of generalized tomograms, both in the classical and quantum domains. We construct a scheme of star-products of thick tomographic symbols and obtain in explicit form the kernels of classical and quantum generalized tomograms . Some of the new tomograms may have interesting applications in quantum optical tomography.
We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermioni c Quantum Cellular Automata (QCA) can be represented as fermionic MPUs. We then introduce a natural generalization of the latter, obtained by allowing for an additional operator acting on their auxiliary space. We characterize a family of such generalized MPUs that are locality-preserving, and show that, up to appending inert ancillary fermionic degrees of freedom, any representative of this family is a fermionic QCA and viceversa. Finally, we prove an index theorem for generalized MPUs, recovering the recently derived classification of fermionic QCA in one dimension. As a technical tool for our analysis, we also introduce a graded canonical form for fermionic matrix product states, proving its uniqueness up to similarity transformations.
The conical function and its relativistic generalization can be viewed as eigenfunctions of the reduced 2-particle Hamiltonians of the hyperbolic Calogero-Moser system and its relativistic generalization. We prove new product formulas for these funct ions. As a consequence, we arrive at explicit diagonalizations of integral operators that commute with the 2-particle Hamiltonians and reduc
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci ng the relative entropy with the Hoeffding distance. Similarly, our upper bound is in terms of a quantity obtained by replacing the relative entropy with the recently introduced max-relative entropy in the definition of the divergence radius of a channel.
Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering pr oblem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا