ﻻ يوجد ملخص باللغة العربية
We consider the noncommutative space-times with Lie-algebraic noncommutativity (e.g. $kappa$-deformed Minkowski space). In the framework with classical fields we extend the $star$-product in order to represent the noncommutative translations in terms of commutative ones. We show the translational invariance of noncommutative bilinear action with local product of noncommutative fields. The quadratic noncommutativity is also briefly discussed.
We consider linear star products on $R^d$ of Lie algebra type. First we derive the closed formula for the polydifferential representation of the corresponding Lie algebra generators. Using this representation we define the Weyl star product on the du
Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This proof is based on the assumption of simple commutation relations between position and velocity. We first study a nonrelativistic particle using Feynman formalism. We show t
We elaborate on the notion of generalized tomograms, both in the classical and quantum domains. We construct a scheme of star-products of thick tomographic symbols and obtain in explicit form the kernels of classical and quantum generalized tomograms
We discuss the renormalizability of the noncommutative U(1)Higgs-Kibble model formulated within the enveloping-algebra approach. We consider both the phase of the model with unbroken gauge symmetry and the phase with spontaneously broken gauge symmet
The quantizer-dequantizer formalism is developed for mean value and probability representation of qubits and qutrits. We derive the star-product kernels providing the possibility to derive explicit expressions of the associative product of the symbol