ﻻ يوجد ملخص باللغة العربية
Some non-linear generalizations of classical Radon tomography were recently introduced by M. Asorey et al [Phys. Rev. A 77, 042115 (2008), where the straight lines of the standard Radon map are replaced by quadratic curves (ellipses, hyperbolas, circles) or quadratic surfaces (ellipsoids, hyperboloids, spheres). We consider here the quantum version of this novel non-linear approach and obtain, by systematic use of the Weyl map, a tomographic encoding approach to quantum states. Non-linear quantum tomograms admit a simple formulation within the framework of the star-product quantization scheme and the reconstruction formulae of the density operators are explicitly given in a closed form, with an explicit construction of quantizers and dequantizers. The role of symmetry groups behind the generalized tomographic maps is analyzed in some detail. We also introduce new generalizations of the standard singular dequantizers of the symplectic tomographic schemes, where the Dirac delta-distributions of operator-valued arguments are replaced by smooth window functions, giving rise to the new concept of thick quantum tomography. Applications for quantum state measurements of photons and matter waves are discussed.
We elaborate on the notion of generalized tomograms, both in the classical and quantum domains. We construct a scheme of star-products of thick tomographic symbols and obtain in explicit form the kernels of classical and quantum generalized tomograms
The non-relativistic quantum mechanics with a generalized uncertainty principle (GUP) is examined in $D$-dimensional free particle and harmonic oscillator systems. The Feynman propagators for these systems are exactly derived within the first order of the GUP parameter.
Graph theory is important in information theory. We introduce a quantization process on graphs and apply the quantized graphs in quantum information. The quon language provides a mathematical theory to study such quantized graphs in a general framewo
The min-cut function of weighted hypergraphs and the von Neumann entropy of pure quantum states are both symmetric submodular functions. In this note, we explain this coincidence by proving that the min-cut function of any weighted hypergraph can be