ﻻ يوجد ملخص باللغة العربية
We study the flux of totally asymmetric simple exclusion processes (TASEPs) on a twin co-axial square tracks. In this biologically motivated model the particles in each track act as mobile bottlenecks against the movement of the particles in the other although the particle are not allowed to move out of their respective tracks. So far as the outer track is concerned, the particles on the inner track act as bottlenecks only over a set of fixed segments of the outer track, in contrast to site-associated and particle-associated quenched randomness in the earlier models of disordered TASEP. In a special limiting situation the movement of particles in the outer track mimic a TASEP with a point-like immobile (i.e., quenched) defect where phase segregation of the particles is known to take place. The length of the inner track as well as the strength and number density of the mobile bottlenecks moving on it are the control parameters that determine the nature of spatio-temporal organization of particles on the outer track. Variation of these control parameters allow variation of the width of the phase-coexistence region on the flux-density plane of the outer track. Some of these phenomena are likely to survive even in the future extensions intended for studying traffic-like collective phenomena of polymerase motors on double-stranded DNA.
Domain wall theory (DWT) has proved to be a powerful tool for the analysis of one-dimensional transport processes. A simple version of it was found very accurate for the Totally Asymmetric Simple Exclusion Process (TASEP) with random sequential updat
Totally asymmetric simple exclusion process (TASEP) was originally introduced as a model for the traffic-like collective movement of ribosomes on a messenger RNA (mRNA) that serves as the track for the motor-like forward stepping of individual riboso
We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal pa
The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends o
Motivated by interest in pedestrian traffic we study two lanes (one-dimensional lattices) of length $L$ that intersect at a single site. Each lane is modeled by a TASEP (Totally Asymmetric Exclusion Process). The particles enter and leave lane $sigma